Skip to main content
Top
Published in: Journal of Polymer Research 10/2023

01-10-2023 | Original Paper

Effect of chain extender on the morphological, rheological and mechanical properties of biodegradable blends from PBAT and P34HB

Authors: Junhao Li, Hongda Cheng, Yi Li, Huan Wang, Hongliang Hu, Jiaxin Liu

Published in: Journal of Polymer Research | Issue 10/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The inherent shortcomings of fully biodegradable poly(butylene adipate-co-terephthalate) (PBAT) copolyesters including low strength, modulus, and melt viscoelasticity were addressed by melt blending of PBAT with high-stiffness and biological poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB). An epoxy-based chain extender was used to increase interfacial adhesion of partially miscible PBAT/P34HB (70wt/30wt) blends. The addition of chain extender refined phase-separated morphology of blends from SEM and decreased the degree of crystallinity by DSC. Compared with neat PBAT, PBAT/P34HB blends with chain extender showed much higher melt viscosity and elasticity, as indicated by rheological properties analyses. Compared with the PBAT/P34HB blend without chain extender, the breaking strength and elongation at break of PBAT/P34HB blend with incorporation of 1 wt% ADR were increased by 91.8% and 58.7%, respectively. It could be concluded that the combination of blending and chain-extension reaction simultaneously improved the strength, elongation at break, and melt viscoelasticity, which contributed to the suitability of biodegradable polymer blends for a wider range of end-use applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dedieu I, Peyron S, Gontard N, Aouf C (2022) The thermo-mechanical recyclability potential of biodegradable biopolyesters: Perspectives and limits for food packaging application. Polym Test 111:107620CrossRef Dedieu I, Peyron S, Gontard N, Aouf C (2022) The thermo-mechanical recyclability potential of biodegradable biopolyesters: Perspectives and limits for food packaging application. Polym Test 111:107620CrossRef
2.
go back to reference Sun YL, Tu LJ, Tsou CH, Lin SM, Lin L, Guzman MR, Zeng R, Xia Y (2023) Thermal and mechanical properties of biodegradable nanocomposites prepared by poly(lactic acid)/acetyl tributyl citrate reinforced with attapulgite. J Polym Res 30:117CrossRef Sun YL, Tu LJ, Tsou CH, Lin SM, Lin L, Guzman MR, Zeng R, Xia Y (2023) Thermal and mechanical properties of biodegradable nanocomposites prepared by poly(lactic acid)/acetyl tributyl citrate reinforced with attapulgite. J Polym Res 30:117CrossRef
3.
go back to reference Torğut G, Gürler N (2021) Nanofiller reinforced biodegradable PHA/PLA composites: physico-chemical, thermal and dielectric properties. J Polym Res 28:452CrossRef Torğut G, Gürler N (2021) Nanofiller reinforced biodegradable PHA/PLA composites: physico-chemical, thermal and dielectric properties. J Polym Res 28:452CrossRef
4.
go back to reference Haider TP, Volker C, Kramm J, Landfester K, Wurm FR (2019) Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew Chem Int Ed Engl 58(1):50–62PubMedCrossRef Haider TP, Volker C, Kramm J, Landfester K, Wurm FR (2019) Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew Chem Int Ed Engl 58(1):50–62PubMedCrossRef
5.
go back to reference Shi XQ, Ito H, Kikutani T (2005) Characterization on mixed-crystal structure and properties of poly(butylene adipate-co-terephthalate) biodegradable fibers. Polymer 46:11442–11450CrossRef Shi XQ, Ito H, Kikutani T (2005) Characterization on mixed-crystal structure and properties of poly(butylene adipate-co-terephthalate) biodegradable fibers. Polymer 46:11442–11450CrossRef
6.
go back to reference Zhao H, Liu H, Liu Y, Yang Y (2020) Blends of poly(butylene adipate-co-terephthalate) (PBAT) and stereocomplex polylactide with improved rheological and mechanical properties. RSC Adv 10:10482–10490PubMedPubMedCentralCrossRef Zhao H, Liu H, Liu Y, Yang Y (2020) Blends of poly(butylene adipate-co-terephthalate) (PBAT) and stereocomplex polylactide with improved rheological and mechanical properties. RSC Adv 10:10482–10490PubMedPubMedCentralCrossRef
7.
go back to reference Zhang S, He Y, Lin Z, Li J, Jiang G (2019) Effects of tartaric acid contents on phase homogeneity, morphology and properties of poly (butyleneadipate-co-terephthalate)/thermoplastic starch bio-composities. Polym Test 76:385–395CrossRef Zhang S, He Y, Lin Z, Li J, Jiang G (2019) Effects of tartaric acid contents on phase homogeneity, morphology and properties of poly (butyleneadipate-co-terephthalate)/thermoplastic starch bio-composities. Polym Test 76:385–395CrossRef
8.
go back to reference Muthuraj R, Misra M, Mohanty AK (2014) Biodegradable poly(butylene succinate) and poly(butylene adipate-co-terephthalate) blends: Reactive extrusion and performance evaluation. J Polym Environ 22:336–349CrossRef Muthuraj R, Misra M, Mohanty AK (2014) Biodegradable poly(butylene succinate) and poly(butylene adipate-co-terephthalate) blends: Reactive extrusion and performance evaluation. J Polym Environ 22:336–349CrossRef
9.
go back to reference Jian J, Zeng X, Huang X (2020) An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)-PBAT. Adv Industrial Engineering Polymer Res 3(1):19–26CrossRef Jian J, Zeng X, Huang X (2020) An overview on synthesis, properties and applications of poly(butylene-adipate-co-terephthalate)-PBAT. Adv Industrial Engineering Polymer Res 3(1):19–26CrossRef
10.
go back to reference Bai J, Pei H, Zhou X, Xie X (2021) Reactive compatibilization and properties of low-cost and high-performance PBAT/thermoplastic starch blends. Eur Polym J 143(15):110198CrossRef Bai J, Pei H, Zhou X, Xie X (2021) Reactive compatibilization and properties of low-cost and high-performance PBAT/thermoplastic starch blends. Eur Polym J 143(15):110198CrossRef
11.
go back to reference Raquez JM, Nabar Y, Narayan R, Dubois P (2008) In situ compatibilization of maleated thermoplastic starch/polyester melt-blends by reactive extrusion. Polym Eng Sci 48(9):1747–1754CrossRef Raquez JM, Nabar Y, Narayan R, Dubois P (2008) In situ compatibilization of maleated thermoplastic starch/polyester melt-blends by reactive extrusion. Polym Eng Sci 48(9):1747–1754CrossRef
12.
go back to reference Fourati Y, Tarrés Q, Mutjé P, Boufi S (2018) PBAT/thermoplastic starch blends: Effect of compatibilizers on the rheological, mechanical and morphological properties. Carbohyd Polym 199(1):51–57CrossRef Fourati Y, Tarrés Q, Mutjé P, Boufi S (2018) PBAT/thermoplastic starch blends: Effect of compatibilizers on the rheological, mechanical and morphological properties. Carbohyd Polym 199(1):51–57CrossRef
13.
go back to reference Xie J (2023) Effect of mixing strategy on thermal and mechanical properties of poly(butylene adipate-co-terephthalate)/poly(lactic acid) incorporated with CaCO3 fillers. J Polym Res 30:229CrossRef Xie J (2023) Effect of mixing strategy on thermal and mechanical properties of poly(butylene adipate-co-terephthalate)/poly(lactic acid) incorporated with CaCO3 fillers. J Polym Res 30:229CrossRef
14.
go back to reference Al-Itry R, Lamnawar K, Maazouz A, Billon N, Combeaud C (2015) Effect of the simultaneous biaxial stretching on the structural and mechanical properties of PLA, PBAT and their blends at rubbery state. Eur Polym J 68:288–301CrossRef Al-Itry R, Lamnawar K, Maazouz A, Billon N, Combeaud C (2015) Effect of the simultaneous biaxial stretching on the structural and mechanical properties of PLA, PBAT and their blends at rubbery state. Eur Polym J 68:288–301CrossRef
15.
go back to reference Dong W, Zou B, Ma P, Liu W, Zhou X, Shi D, Ni Z, Chen M (2013) Influence of phthalic anhydride and bioxazoline on the mechanical and morphological properties of biodegradable poly(lactic acid)/poly[(butylene adipate)-co-terephthalate] blends. Polym Int 62(12):1783–1790CrossRef Dong W, Zou B, Ma P, Liu W, Zhou X, Shi D, Ni Z, Chen M (2013) Influence of phthalic anhydride and bioxazoline on the mechanical and morphological properties of biodegradable poly(lactic acid)/poly[(butylene adipate)-co-terephthalate] blends. Polym Int 62(12):1783–1790CrossRef
16.
go back to reference Mathew J, Das JP, TP M, Kumar S (2022) Development of poly (butylene adipate-co-terephthalate) PBAT toughened poly (lactic acid) blends 3D printing filament. J Polym Res 29:474CrossRef Mathew J, Das JP, TP M, Kumar S (2022) Development of poly (butylene adipate-co-terephthalate) PBAT toughened poly (lactic acid) blends 3D printing filament. J Polym Res 29:474CrossRef
17.
go back to reference Nakayama D, Wu F, Mohanty AK, Hirai S, Misra M (2018) Biodegradable composites developed from PBAT/PLA binary blends and silk powder: compatibilization and performance evaluation. ACS Omega 3(10):12412–12421PubMedPubMedCentralCrossRef Nakayama D, Wu F, Mohanty AK, Hirai S, Misra M (2018) Biodegradable composites developed from PBAT/PLA binary blends and silk powder: compatibilization and performance evaluation. ACS Omega 3(10):12412–12421PubMedPubMedCentralCrossRef
18.
go back to reference Jiang G, Li H, Wang F (2021) Structure of PBAT/PPC blends prepared by in-situ reactive compatibilization and properties of their blowing films. Mater Today Commun 27:102215CrossRef Jiang G, Li H, Wang F (2021) Structure of PBAT/PPC blends prepared by in-situ reactive compatibilization and properties of their blowing films. Mater Today Commun 27:102215CrossRef
19.
go back to reference Pan H, Hao Y, Zhao Y, Lang X, Zhang Y, Wang Z, Zhang H, Dong L (2017) Improved mechanical properties, barrier properties and degradation behavior of poly(butylenes adipate-co-terephthalate)/poly(propylene carbonate) films. Korean J Chem Eng 34:1294–1304CrossRef Pan H, Hao Y, Zhao Y, Lang X, Zhang Y, Wang Z, Zhang H, Dong L (2017) Improved mechanical properties, barrier properties and degradation behavior of poly(butylenes adipate-co-terephthalate)/poly(propylene carbonate) films. Korean J Chem Eng 34:1294–1304CrossRef
20.
go back to reference Xu P, Feng Y, Ma P, Chen Y, Dong W, Chen M (2017) Crystallization behaviours of bacterially synthesized poly(hydroxyalkanoate)s in the presence of oxalamide compounds with different configurations. Int J Biol Macromol 104:624–630PubMedCrossRef Xu P, Feng Y, Ma P, Chen Y, Dong W, Chen M (2017) Crystallization behaviours of bacterially synthesized poly(hydroxyalkanoate)s in the presence of oxalamide compounds with different configurations. Int J Biol Macromol 104:624–630PubMedCrossRef
21.
go back to reference Che X, Ye H, Chen G (2018) Effects of uracil on crystallization and rheological property of poly(R-3-hydroxybutyrate-co-4-hydroxybutyrate). Composites Part A-Appl S 109:141–150CrossRef Che X, Ye H, Chen G (2018) Effects of uracil on crystallization and rheological property of poly(R-3-hydroxybutyrate-co-4-hydroxybutyrate). Composites Part A-Appl S 109:141–150CrossRef
22.
go back to reference Bian Y, Han L, Han C, Lin H, Zhang H, Bian J, Dong L (2014) Intriguing crystallization behavior and rheological properties of radical-based crosslinked biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). CrystEngComm 16:2702–2714CrossRef Bian Y, Han L, Han C, Lin H, Zhang H, Bian J, Dong L (2014) Intriguing crystallization behavior and rheological properties of radical-based crosslinked biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). CrystEngComm 16:2702–2714CrossRef
23.
go back to reference Li Y, Yao S, Han C, Yu Y, Xiao L (2021) Ternary blends from biological poly(3-hydroxybutyrate-co-4-hydroxyvalerate), poly(L-lactic acid), and poly(vinyl acetate) with balanced properties. Int J Biol Macromol 181:60–71PubMedCrossRef Li Y, Yao S, Han C, Yu Y, Xiao L (2021) Ternary blends from biological poly(3-hydroxybutyrate-co-4-hydroxyvalerate), poly(L-lactic acid), and poly(vinyl acetate) with balanced properties. Int J Biol Macromol 181:60–71PubMedCrossRef
24.
go back to reference AL-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrada Stabil 97:1898–1914CrossRef AL-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrada Stabil 97:1898–1914CrossRef
25.
go back to reference Tang X, Guo W, Yin G, Li B, Wu C (2007) Reactive extrusion of recycled poly(ethylene terephthalate) with polycarbonate by addition of chain extender. J Appl Polym Sci 104:2602–2607CrossRef Tang X, Guo W, Yin G, Li B, Wu C (2007) Reactive extrusion of recycled poly(ethylene terephthalate) with polycarbonate by addition of chain extender. J Appl Polym Sci 104:2602–2607CrossRef
26.
go back to reference VillalobosM AA, Greeley T, Turco G, Deeter G (2006) Oligomeric chain extenders for economic reprocessing and recycling of condensation plastics. Energy 31:3227–3234CrossRef VillalobosM AA, Greeley T, Turco G, Deeter G (2006) Oligomeric chain extenders for economic reprocessing and recycling of condensation plastics. Energy 31:3227–3234CrossRef
27.
go back to reference Khankrua R, Pivsa-Art S, Hiroyuki H, Suttiruengwong S (2014) Effect of chain extenders on thermal and mechanical properties of poly(lactic acid) at high processing temperatures: Potential application in PLA/polyamide 6 blend. Polym Degrad Stabil 108:232–240CrossRef Khankrua R, Pivsa-Art S, Hiroyuki H, Suttiruengwong S (2014) Effect of chain extenders on thermal and mechanical properties of poly(lactic acid) at high processing temperatures: Potential application in PLA/polyamide 6 blend. Polym Degrad Stabil 108:232–240CrossRef
28.
go back to reference Limsukon W, Auras R, Selke S (2019) Hydrolytic degradation and lifetime prediction of poly(lactic acid) modified with a multifunctional epoxy-based chain extender. Polym Test 80:106108CrossRef Limsukon W, Auras R, Selke S (2019) Hydrolytic degradation and lifetime prediction of poly(lactic acid) modified with a multifunctional epoxy-based chain extender. Polym Test 80:106108CrossRef
29.
go back to reference Kahraman Y, Özdemir B, Kılıç V, Goksu YA, Nofar M (2021) Super toughened and highly ductile PLA/TPU blend systems by in situ reactive interfacial compatibilization using multifunctional epoxy-based chain extender. J Appl Polym Sci 138(20):50457CrossRef Kahraman Y, Özdemir B, Kılıç V, Goksu YA, Nofar M (2021) Super toughened and highly ductile PLA/TPU blend systems by in situ reactive interfacial compatibilization using multifunctional epoxy-based chain extender. J Appl Polym Sci 138(20):50457CrossRef
30.
go back to reference Xu X, Ding Y, Qian Z, Wang F, Wen B, Zhou H, Zhang S, Yang M (2009) Degradation of poly(ethylene terephthalate)/clay nanocomposites during melt extrusion: effect of clay catalysis and chain extension. Polym Degrad Stab 94(1):113–123CrossRef Xu X, Ding Y, Qian Z, Wang F, Wen B, Zhou H, Zhang S, Yang M (2009) Degradation of poly(ethylene terephthalate)/clay nanocomposites during melt extrusion: effect of clay catalysis and chain extension. Polym Degrad Stab 94(1):113–123CrossRef
31.
go back to reference Awaja F, Pavel D (2005) Injection stretch blow moulding process of reactive extruded recycled PET and virgin PET blends. Eur Polym J 41(11):2614–2634CrossRef Awaja F, Pavel D (2005) Injection stretch blow moulding process of reactive extruded recycled PET and virgin PET blends. Eur Polym J 41(11):2614–2634CrossRef
32.
go back to reference Feng L, Bian X, Li G, Chen Z, Chen X (2016) Compatibility, mechanical properties and stability of blends of polylactide and polyurethane based on poly(ethylene glycol)-b-polylactide copolymers by chain extension with diisocyanate. Polym Degrad Stabil 125:148–155CrossRef Feng L, Bian X, Li G, Chen Z, Chen X (2016) Compatibility, mechanical properties and stability of blends of polylactide and polyurethane based on poly(ethylene glycol)-b-polylactide copolymers by chain extension with diisocyanate. Polym Degrad Stabil 125:148–155CrossRef
33.
go back to reference Zhou C, Ma J, Pan L (2002) Liang B (2002) Transesterification kinetics in the reactive blends of liquid crystalline copolyesters and poly(ethylene terephthalate). Eur Polym J 38(5):1049–1053CrossRef Zhou C, Ma J, Pan L (2002) Liang B (2002) Transesterification kinetics in the reactive blends of liquid crystalline copolyesters and poly(ethylene terephthalate). Eur Polym J 38(5):1049–1053CrossRef
34.
go back to reference Corre Y, Duchet J, Reignier J, Maazouz A (2011) Melt strengthening of poly (lactic acid) through reactive extrusion with epoxyfunctionalized chains. Rheol Acta 50:613–629CrossRef Corre Y, Duchet J, Reignier J, Maazouz A (2011) Melt strengthening of poly (lactic acid) through reactive extrusion with epoxyfunctionalized chains. Rheol Acta 50:613–629CrossRef
35.
go back to reference Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT (2010) Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym Degrad Stabil 95:2641–2647CrossRef Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT (2010) Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym Degrad Stabil 95:2641–2647CrossRef
36.
go back to reference Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym Test 43:27–37CrossRef Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym Test 43:27–37CrossRef
37.
go back to reference Wang XP, H, Jia S, Wang Z, Tian H, Han L, Zhang H (2022) In-situ reaction compatibilization modification of poly(butylene succinate-co-terephthalate)/polylactide acid blend films by multifunctional epoxy compound. Int J Biol Macromol 213:934–943PubMedCrossRef Wang XP, H, Jia S, Wang Z, Tian H, Han L, Zhang H (2022) In-situ reaction compatibilization modification of poly(butylene succinate-co-terephthalate)/polylactide acid blend films by multifunctional epoxy compound. Int J Biol Macromol 213:934–943PubMedCrossRef
38.
go back to reference Feijoo P, Mohanty AK, Rodriguez-Uribe A, Gámez-Pérez J, Cabedo L, Misra M (2023) Biodegradable blends from bacterial biopolyester PHBV and bio-based PBSA: Study of the effect of chain extender on the thermal, mechanical andmorphological properties. Int J Biol Macromol 225:1291–1305PubMedCrossRef Feijoo P, Mohanty AK, Rodriguez-Uribe A, Gámez-Pérez J, Cabedo L, Misra M (2023) Biodegradable blends from bacterial biopolyester PHBV and bio-based PBSA: Study of the effect of chain extender on the thermal, mechanical andmorphological properties. Int J Biol Macromol 225:1291–1305PubMedCrossRef
39.
go back to reference Walha F, Lamnawar K, Maazouz A, Jaziri M (2016) Rheological, morphological and mechanical studies of sustainably sourced polymer blends based on poly(lactic acid) and polyamide 11. Polymers 8:61PubMedPubMedCentralCrossRef Walha F, Lamnawar K, Maazouz A, Jaziri M (2016) Rheological, morphological and mechanical studies of sustainably sourced polymer blends based on poly(lactic acid) and polyamide 11. Polymers 8:61PubMedPubMedCentralCrossRef
40.
go back to reference Wang X, Peng S, Chen H, Yu X, Zhao X (2019) Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization. Compos Part B-Eng 173:107028CrossRef Wang X, Peng S, Chen H, Yu X, Zhao X (2019) Mechanical properties, rheological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization. Compos Part B-Eng 173:107028CrossRef
41.
go back to reference Ravati S, Beaulieu C, Zolali AM, Favis BD (2014) High performance materials based on a self-assembled multiple-percolated ternary blend. Aiche J 60(8):3005–3012CrossRef Ravati S, Beaulieu C, Zolali AM, Favis BD (2014) High performance materials based on a self-assembled multiple-percolated ternary blend. Aiche J 60(8):3005–3012CrossRef
42.
go back to reference Sahoo S, Misra M, Mohanty AK (2013) Effect of compatibilizer and fillers on the properties of injection molded lignin-based hybrid green composites. J Appl Polym Sci 127(5):4110–4121CrossRef Sahoo S, Misra M, Mohanty AK (2013) Effect of compatibilizer and fillers on the properties of injection molded lignin-based hybrid green composites. J Appl Polym Sci 127(5):4110–4121CrossRef
43.
go back to reference EdeCD N, Souza AGde, Rosa Ddos S (2019) Effect of the Joncryl® ADR compatibilizing agent in blends of poly(butylene adipate-co-terephthalate)/poly (lactic acid). Macromol Symp 383:1800035CrossRef EdeCD N, Souza AGde, Rosa Ddos S (2019) Effect of the Joncryl® ADR compatibilizing agent in blends of poly(butylene adipate-co-terephthalate)/poly (lactic acid). Macromol Symp 383:1800035CrossRef
44.
go back to reference Aversa C, Barletta M, Cappiello G, Gisario A (2022) Compatibilization strategies and analysis of morphological features of poly(butylene adipate-co-terephthalate) (PBAT)/poly(lactic acid) PLA blends: A state-of-art review. Eur Polym J 173:111304CrossRef Aversa C, Barletta M, Cappiello G, Gisario A (2022) Compatibilization strategies and analysis of morphological features of poly(butylene adipate-co-terephthalate) (PBAT)/poly(lactic acid) PLA blends: A state-of-art review. Eur Polym J 173:111304CrossRef
45.
go back to reference Jeon HK, Macosko CW (2003) Visualization of block copolymer distribution on a sheared drop. Polymer 44:5381–5386CrossRef Jeon HK, Macosko CW (2003) Visualization of block copolymer distribution on a sheared drop. Polymer 44:5381–5386CrossRef
46.
go back to reference Bousmina M (1999) Effect of interfacial tension on linear viscoelastic behavior of immiscible polymer blends. Rheol Acta 38:251–254CrossRef Bousmina M (1999) Effect of interfacial tension on linear viscoelastic behavior of immiscible polymer blends. Rheol Acta 38:251–254CrossRef
47.
go back to reference Han CD, Kim JK (1993) On the use of time-temperature superposition in multicomponent/multiphase polymer systems. Polymer 34:2533–2539CrossRef Han CD, Kim JK (1993) On the use of time-temperature superposition in multicomponent/multiphase polymer systems. Polymer 34:2533–2539CrossRef
48.
go back to reference Zhang Y, Zuo M, Song Y, Yan X, Zheng Q (2015) Dynamic rheology and dielectric relaxation of poly(vinylidene fluoride)/poly(methyl methacrylate) blends. Compos Sci Technol 106(16):39–46CrossRef Zhang Y, Zuo M, Song Y, Yan X, Zheng Q (2015) Dynamic rheology and dielectric relaxation of poly(vinylidene fluoride)/poly(methyl methacrylate) blends. Compos Sci Technol 106(16):39–46CrossRef
49.
go back to reference Hao X, Kaschta J, Liu X, Pan Y, Schubert DW (2015) Entanglement network formed in miscible PLA/PMMA blends and its role in rheological and thermo-mechanical properties of the blends. Polymer 80:38–45CrossRef Hao X, Kaschta J, Liu X, Pan Y, Schubert DW (2015) Entanglement network formed in miscible PLA/PMMA blends and its role in rheological and thermo-mechanical properties of the blends. Polymer 80:38–45CrossRef
50.
go back to reference Tian J, Yu W, Zhou C (2006) The preparation and rheology characterization of long chain branching polypropylene. Polymer 47:7962–7969CrossRef Tian J, Yu W, Zhou C (2006) The preparation and rheology characterization of long chain branching polypropylene. Polymer 47:7962–7969CrossRef
51.
go back to reference Jiang G, Wang F, Zhang S, Huang H (2020) Structure and improved properties of PPC/PBAT blends via controlling phase morphology based on melt viscosity. J Appl Polym Sci 137(31):48924CrossRef Jiang G, Wang F, Zhang S, Huang H (2020) Structure and improved properties of PPC/PBAT blends via controlling phase morphology based on melt viscosity. J Appl Polym Sci 137(31):48924CrossRef
52.
go back to reference Li Y, Cheng H, Yu M, Han C, Shi H (2022) Blends of biodegradable poly(ε-caprolactone) and sustainable poly(propylene carbonate) with enhanced mechanical and rheological properties. Colloid Polym Sci 300:59–68CrossRef Li Y, Cheng H, Yu M, Han C, Shi H (2022) Blends of biodegradable poly(ε-caprolactone) and sustainable poly(propylene carbonate) with enhanced mechanical and rheological properties. Colloid Polym Sci 300:59–68CrossRef
54.
go back to reference Sousa FM, Cavalcanti FB, Marinho VAD, Morais DDS, Almeida TG, Carvalho LH (2022) Effect of composition on permeability, mechanical properties and biodegradation of PBAT/PCL blends films. Polym Bull 79:5327–5338CrossRef Sousa FM, Cavalcanti FB, Marinho VAD, Morais DDS, Almeida TG, Carvalho LH (2022) Effect of composition on permeability, mechanical properties and biodegradation of PBAT/PCL blends films. Polym Bull 79:5327–5338CrossRef
55.
go back to reference Mazidi MM, Edalat A, Berahman R, Hosseini FS (2018) Highly-toughened polylactide- (PLA-) based ternary blends with significantly enhanced glass transition and melt strength: Tailoring the interfacial interactions, phase morphology, and performance. Macromolecules 51:4298–4314CrossRef Mazidi MM, Edalat A, Berahman R, Hosseini FS (2018) Highly-toughened polylactide- (PLA-) based ternary blends with significantly enhanced glass transition and melt strength: Tailoring the interfacial interactions, phase morphology, and performance. Macromolecules 51:4298–4314CrossRef
Metadata
Title
Effect of chain extender on the morphological, rheological and mechanical properties of biodegradable blends from PBAT and P34HB
Authors
Junhao Li
Hongda Cheng
Yi Li
Huan Wang
Hongliang Hu
Jiaxin Liu
Publication date
01-10-2023
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 10/2023
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-023-03775-7

Other articles of this Issue 10/2023

Journal of Polymer Research 10/2023 Go to the issue

Premium Partners