Skip to main content
Top
Published in: Journal of Materials Science 10/2015

01-05-2015 | Original Paper

Effect of crystallization conditions on the physical properties of a two-layer glassine paper/polyhydroxybutyrate structure

Authors: Salman Safari, Theo G. M. van de Ven

Published in: Journal of Materials Science | Issue 10/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polyhydroxybutyrate (PHB) is a hydrophobic, biodegradable biopolymer, which can be a potential substitute for currently used synthesized polymers in the packaging industry. However, its utility is often limited by its brittleness and poor mechanical properties, mainly because of its through-thickness fractures. In this study, we laminate and crystallize PHB on glassine paper by hot-pressing and tune the crystallization conditions to minimize cracking. Glassine paper is impermeable to PHB granules and allows the formation of a distinguishable bilayer of PHB. It was found that glassine paper serves as a soft substrate, which increases the number of nucleation sites of the spherulites and prevents growth of the cracks in the neighboring PHB layer. Quenching the films to the crystallization temperature was found to minimize cracking enough to reduce the water vapor transmission rate to \(15\)\(25\,{\mathrm{g}}\,{\mathrm{m}}^{-2}\,{\mathrm{day}}^{-1}\), irrespective of the crystallization temperature; however, the mechanical properties improved only at the crystallization temperatures below 77 °C, perhaps due to the local stress in the existing cracks at higher crystallization temperatures. The optimum crystallization conditions were found to be quenching the film in an ice bath and crystallization at room temperature, by which we obtained mechanical strength and Young’s modulus of \(80\,\text {MPa}\) and \(2.5\,\text {GPa}\), respectively, and a water vapor transmission rate of \(20\,\text {g}\,\text {m}^{-2}\,\text {day}^{-1}\). Our results suggest a simple and cost-effective method to produce PHB films with enhanced mechanical and barrier properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Abe H, Matsubara I, Doi Y (1995) Physical properties and enzymatic degradability of polymer blends of bacterial poly[(r)-3-hydroxybutyrate] and poly[(r, s)-3-hydroxybutyrate] stereoisomers. Macromolecules 28(4):844–853CrossRef Abe H, Matsubara I, Doi Y (1995) Physical properties and enzymatic degradability of polymer blends of bacterial poly[(r)-3-hydroxybutyrate] and poly[(r, s)-3-hydroxybutyrate] stereoisomers. Macromolecules 28(4):844–853CrossRef
2.
go back to reference Alamo RG, Mandelkern L (1991) Crystallization kinetics of random ethylene copolymers. Macromolecules 24:6480–6493CrossRef Alamo RG, Mandelkern L (1991) Crystallization kinetics of random ethylene copolymers. Macromolecules 24:6480–6493CrossRef
3.
go back to reference An Y, Dong L, Mo Z, Liu T, Feng Z (1998) Nonisothermal crystallization kinetics of poly (\(\beta \)-hydroxybutyrate). J Polym Sci Part B 36:1305–1312CrossRef An Y, Dong L, Mo Z, Liu T, Feng Z (1998) Nonisothermal crystallization kinetics of poly (\(\beta \)-hydroxybutyrate). J Polym Sci Part B 36:1305–1312CrossRef
4.
go back to reference Avrami M (1940) Kinetics of phase change. ii transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224CrossRef Avrami M (1940) Kinetics of phase change. ii transformation-time relations for random distribution of nuclei. J Chem Phys 8:212–224CrossRef
5.
go back to reference Barham PJ (1984) Nucleation behaviour of poly-3-hydroxybutyrate. J Mater Sci 19(12):3826–3834CrossRef Barham PJ (1984) Nucleation behaviour of poly-3-hydroxybutyrate. J Mater Sci 19(12):3826–3834CrossRef
6.
go back to reference Barham PJ, Keller A (1986) The relationship between microstructure and mode of fracture in polyhydroxybutyrate. J Polym Sci 24(1):69–77CrossRef Barham PJ, Keller A (1986) The relationship between microstructure and mode of fracture in polyhydroxybutyrate. J Polym Sci 24(1):69–77CrossRef
7.
go back to reference Barham PJ, Keller A, Otun EL, Holmes PA (1984) Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J Mater Sci 19(9):2781–2794CrossRef Barham PJ, Keller A, Otun EL, Holmes PA (1984) Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J Mater Sci 19(9):2781–2794CrossRef
8.
go back to reference Barham PJ, Barker P, Organ SJ (1992) Physical properties of poly(hydroxybutyrate) and copolymers of hydroxybutyrate and hydroxyvalerate. FEMS Microbiol Rev 103(2–4):289–298CrossRef Barham PJ, Barker P, Organ SJ (1992) Physical properties of poly(hydroxybutyrate) and copolymers of hydroxybutyrate and hydroxyvalerate. FEMS Microbiol Rev 103(2–4):289–298CrossRef
9.
go back to reference Barud HS, L SJ, Santos DB, Crespi MS, Ribeiro CA, Messaddeq Y, Ribeiro SJL (2011) Bacterial cellulose/poly(3-hydroxybutyrate) composite membranes. Carbohydr Polym 83(3):1279–1284CrossRef Barud HS, L SJ, Santos DB, Crespi MS, Ribeiro CA, Messaddeq Y, Ribeiro SJL (2011) Bacterial cellulose/poly(3-hydroxybutyrate) composite membranes. Carbohydr Polym 83(3):1279–1284CrossRef
10.
go back to reference Bessel TJ, Hull D, Shortall JB (1974) The effect of polymerization conditions and crystallinity on the mechanical properties and fracture of spherulitic nylon 6. J Mater Sci 10(7):1127–1136CrossRef Bessel TJ, Hull D, Shortall JB (1974) The effect of polymerization conditions and crystallinity on the mechanical properties and fracture of spherulitic nylon 6. J Mater Sci 10(7):1127–1136CrossRef
11.
go back to reference Bloembergen S, Holden DA, Hamer GK, Bluhm TL, Marchessault RH (1986) Studies of composition and crystallinity of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules 19(11):2865–2871CrossRef Bloembergen S, Holden DA, Hamer GK, Bluhm TL, Marchessault RH (1986) Studies of composition and crystallinity of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules 19(11):2865–2871CrossRef
12.
go back to reference Bourbonnais R, Marchessault RH (2010) Application of polyhydroxyalkanoate granules for sizing of paper. Biomacromolecules 11(4):989–993CrossRef Bourbonnais R, Marchessault RH (2010) Application of polyhydroxyalkanoate granules for sizing of paper. Biomacromolecules 11(4):989–993CrossRef
13.
go back to reference Corre Y, Bruzaud S, Audic J, Grohens Y (2012) Morphology and functional properties of commercial polyhydroxyalkanoates: a comprehensive and comparative study. Polym Test 31(2):226–235CrossRef Corre Y, Bruzaud S, Audic J, Grohens Y (2012) Morphology and functional properties of commercial polyhydroxyalkanoates: a comprehensive and comparative study. Polym Test 31(2):226–235CrossRef
14.
go back to reference Cyras VP, Soledad CM, Mauri AN, Analia V (2007) Biodegradable double-layer films based on biological resources: polyhydroxybutyrate and cellulose. J Appl Polym Sci 106(2):749–756CrossRef Cyras VP, Soledad CM, Mauri AN, Analia V (2007) Biodegradable double-layer films based on biological resources: polyhydroxybutyrate and cellulose. J Appl Polym Sci 106(2):749–756CrossRef
15.
go back to reference Cyras VP, Soledad CM, Analia V (2009) Biocomposites based on renewable resource: acetylated and non acetylated cellulose cardboard coated with polyhydroxybutyrate. Polymer 50(26):6274–6280CrossRef Cyras VP, Soledad CM, Analia V (2009) Biocomposites based on renewable resource: acetylated and non acetylated cellulose cardboard coated with polyhydroxybutyrate. Polymer 50(26):6274–6280CrossRef
16.
go back to reference de Koning GJM, Scheeren AHC, Lemstra PJ, Peeters M, Reynaers H (1994) Crystallization phenomena in bacterial poly[(r)-3-hydroxybutyrate]: 3. toughening via texture changes. Polymer 35(21):4598–4605CrossRef de Koning GJM, Scheeren AHC, Lemstra PJ, Peeters M, Reynaers H (1994) Crystallization phenomena in bacterial poly[(r)-3-hydroxybutyrate]: 3. toughening via texture changes. Polymer 35(21):4598–4605CrossRef
17.
go back to reference Diez-Pascual AM, Diez-Vicente AL (2014) Zno-reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging. ACS Appl Mater Interfaces 6(12):9822–9834CrossRef Diez-Pascual AM, Diez-Vicente AL (2014) Zno-reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bionanocomposites with antimicrobial function for food packaging. ACS Appl Mater Interfaces 6(12):9822–9834CrossRef
18.
go back to reference El-Hadi A, Schnabel R, Straube E, Muller G, Henning S (2002) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) phas and their blends. Polym Test 21(6):665–675CrossRef El-Hadi A, Schnabel R, Straube E, Muller G, Henning S (2002) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) phas and their blends. Polym Test 21(6):665–675CrossRef
19.
go back to reference Follain N, Chappey C, Dargent E, Chivrac F, Cretois R, Marais S (2014) Structure and barrier properties of biodegradable polyhydroxyalkanoate films. J Phys Chem C 118(12):6165–6177CrossRef Follain N, Chappey C, Dargent E, Chivrac F, Cretois R, Marais S (2014) Structure and barrier properties of biodegradable polyhydroxyalkanoate films. J Phys Chem C 118(12):6165–6177CrossRef
20.
go back to reference Galeski A, Piorkowska E (1983a) Localized volume deficiencies as an effect of spherulite growth. i. the two-dimensional case. J Polym Sci 21(8):1299–1312 Galeski A, Piorkowska E (1983a) Localized volume deficiencies as an effect of spherulite growth. i. the two-dimensional case. J Polym Sci 21(8):1299–1312
21.
go back to reference Galeski A, Piorkowska E (1983b) Localized volume deficiencies as an effect of spherulite growth. ii. the three-dimensional case. J Polym Sci 21(8):1313–1322 Galeski A, Piorkowska E (1983b) Localized volume deficiencies as an effect of spherulite growth. ii. the three-dimensional case. J Polym Sci 21(8):1313–1322
22.
go back to reference Gozzano M, Tomasi G, Scandola M (1997) X-ray investigation on melt-crystallized bacterial poly(3-hydroxybutyrate). Macromol Chem Phys 198(1):71–80CrossRef Gozzano M, Tomasi G, Scandola M (1997) X-ray investigation on melt-crystallized bacterial poly(3-hydroxybutyrate). Macromol Chem Phys 198(1):71–80CrossRef
23.
go back to reference Gozzano M, Focarete ML, Rieke LC, Scandola M (2000) Bacterial poly(3-hydroxybutyrate): an optical microscopy and microfocus X-ray diffraction study. Biomacromolecules 1(4):604–608CrossRef Gozzano M, Focarete ML, Rieke LC, Scandola M (2000) Bacterial poly(3-hydroxybutyrate): an optical microscopy and microfocus X-ray diffraction study. Biomacromolecules 1(4):604–608CrossRef
24.
go back to reference Gumel AM, Annuar MSM, Chisti Y (2013) Recent advances in the production, recovery and applications of polyhydroxyalkanoates. J Polym Environ 21(2):580–605CrossRef Gumel AM, Annuar MSM, Chisti Y (2013) Recent advances in the production, recovery and applications of polyhydroxyalkanoates. J Polym Environ 21(2):580–605CrossRef
26.
go back to reference Hobbs JK, Barham PJ (1998b) The fracture of poly(hydroxybutyrate) part iii fracture morphology in thin films and bulk systems. J Mater Sci 34(34):4831–4844. doi:10.1023/A:1004659726586 Hobbs JK, Barham PJ (1998b) The fracture of poly(hydroxybutyrate) part iii fracture morphology in thin films and bulk systems. J Mater Sci 34(34):4831–4844. doi:10.​1023/​A:​1004659726586
27.
go back to reference Hobbs JK, McMaster TJ, Miles MJ, Barham PJ (1996) Cracking in spherulites of poly(hydroxybutyrate). Polymer 37(15):3241–3246CrossRef Hobbs JK, McMaster TJ, Miles MJ, Barham PJ (1996) Cracking in spherulites of poly(hydroxybutyrate). Polymer 37(15):3241–3246CrossRef
28.
go back to reference Iordanskii A, Kamaev PP, Hanggi UJ (2000) Modification via preparation for poly(3-hydroxybutyrate) films: water-transport phenomena and sorption. J Appl Polym Sci 76(4):475–480CrossRef Iordanskii A, Kamaev PP, Hanggi UJ (2000) Modification via preparation for poly(3-hydroxybutyrate) films: water-transport phenomena and sorption. J Appl Polym Sci 76(4):475–480CrossRef
29.
go back to reference Jacquel N, Lo C, Wu H (2007) Solubility of polyhydroxyalkanoates by experiment and thermodynamic correlations. J Am Inst Chem Eng 53(10):2704–2714CrossRef Jacquel N, Lo C, Wu H (2007) Solubility of polyhydroxyalkanoates by experiment and thermodynamic correlations. J Am Inst Chem Eng 53(10):2704–2714CrossRef
30.
go back to reference Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764CrossRef Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90(2):735–764CrossRef
31.
go back to reference Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6(1):1–8CrossRef Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6(1):1–8CrossRef
32.
go back to reference Lin Y, Fan Y (2012) Substrate effect on the crystallization of isotactic polypropylene. J Appl Polym Sci 125(1):233–245CrossRef Lin Y, Fan Y (2012) Substrate effect on the crystallization of isotactic polypropylene. J Appl Polym Sci 125(1):233–245CrossRef
33.
go back to reference Martinez-Salazar J, Sanchez-Cuesta M, Barham PJ, Keller A (1989) Thermal expansion and spherulite cracking in 3-hydroxybutyrate/3-hydroxyvalerate copolymers. J Mater Sci Lett 8(17):490–492CrossRef Martinez-Salazar J, Sanchez-Cuesta M, Barham PJ, Keller A (1989) Thermal expansion and spherulite cracking in 3-hydroxybutyrate/3-hydroxyvalerate copolymers. J Mater Sci Lett 8(17):490–492CrossRef
34.
go back to reference Miguel O, Iruin JJ (1999) Water transport properties in poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biopolymers. J Appl Polym Sci 73(4):455–468CrossRef Miguel O, Iruin JJ (1999) Water transport properties in poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biopolymers. J Appl Polym Sci 73(4):455–468CrossRef
35.
go back to reference Miguel O, Fernandez-Berridi MJ, Iruin JJ (1997) Survey on transport properties of liquids, vapors, and gases in biodegradable poly(3-hydroxybutyrate) (phb). J Appl Polym Sci 64(9):1849–1859CrossRef Miguel O, Fernandez-Berridi MJ, Iruin JJ (1997) Survey on transport properties of liquids, vapors, and gases in biodegradable poly(3-hydroxybutyrate) (phb). J Appl Polym Sci 64(9):1849–1859CrossRef
36.
go back to reference Miguel O, Egiburu JJ, Iruin JJ (2001) Blends of bacterial poly(3-hydroxybutyrate) with synthetic poly(3-hydroxybutyrate) and poly(epichlorohydrin): transport properties of carbon dioxide and water vapour. Polymer 42(3):953–962CrossRef Miguel O, Egiburu JJ, Iruin JJ (2001) Blends of bacterial poly(3-hydroxybutyrate) with synthetic poly(3-hydroxybutyrate) and poly(epichlorohydrin): transport properties of carbon dioxide and water vapour. Polymer 42(3):953–962CrossRef
37.
go back to reference Nurkhamidah S, Woo EM (2012) Correlation of crack patterns and ring bands in spherulites of low molecular weight poly(l-lactic acid). Colloid Polym Sci 290(3):275–288CrossRef Nurkhamidah S, Woo EM (2012) Correlation of crack patterns and ring bands in spherulites of low molecular weight poly(l-lactic acid). Colloid Polym Sci 290(3):275–288CrossRef
39.
go back to reference Owen AJ, Heinzel J, Skrbic Z, Divjakovic V (1992) Crystallization and melting behaviour of phb and phb/hv copolymer. Polymer 33(7):1563–1567CrossRef Owen AJ, Heinzel J, Skrbic Z, Divjakovic V (1992) Crystallization and melting behaviour of phb and phb/hv copolymer. Polymer 33(7):1563–1567CrossRef
40.
go back to reference Parra DF, Fusaro J, Gaboardi F, Rosa DS (2006) Influence of poly (ethylene glycol) on the thermal, mechanical, morphological, physicalechemical and biodegradation properties of poly(3-hydroxybutyrate). Polym Degrad Stab 91(9):1954–1959CrossRef Parra DF, Fusaro J, Gaboardi F, Rosa DS (2006) Influence of poly (ethylene glycol) on the thermal, mechanical, morphological, physicalechemical and biodegradation properties of poly(3-hydroxybutyrate). Polym Degrad Stab 91(9):1954–1959CrossRef
41.
go back to reference Pizzoli M, Scandola M, Ceccorulli G (1994) Crystallization and melting behaviour of phb and phb/hv copolymer. Macromolecules 27(17):4755–4761CrossRef Pizzoli M, Scandola M, Ceccorulli G (1994) Crystallization and melting behaviour of phb and phb/hv copolymer. Macromolecules 27(17):4755–4761CrossRef
42.
go back to reference Prakalathan K, Mohanty S, Nayak SK (2014) Reinforcing effect and isothermal crystallization kinetics of poly(3-hydroxybutyrate) nanocomposites blended with organically modified montmorillonite. Polym Compos 35(5):999–1012CrossRef Prakalathan K, Mohanty S, Nayak SK (2014) Reinforcing effect and isothermal crystallization kinetics of poly(3-hydroxybutyrate) nanocomposites blended with organically modified montmorillonite. Polym Compos 35(5):999–1012CrossRef
43.
go back to reference Rajan R, Sreekumar PA, Joseph K, Skrifvars M (2011) Thermal and mechanical properties of chitosan reinforced polyhydroxybutyrate composites. J Appl Polym Sci 124(4):3357–3362CrossRef Rajan R, Sreekumar PA, Joseph K, Skrifvars M (2011) Thermal and mechanical properties of chitosan reinforced polyhydroxybutyrate composites. J Appl Polym Sci 124(4):3357–3362CrossRef
44.
go back to reference Ruka DR, Simon GP, Dean KM (2013) In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydr Polym 92(2):1717–1723CrossRef Ruka DR, Simon GP, Dean KM (2013) In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydr Polym 92(2):1717–1723CrossRef
45.
go back to reference Shogren R (1997) Water vapor permeability of biodegradable polymers. J Environ Polym Degrad 5(2):91–95CrossRef Shogren R (1997) Water vapor permeability of biodegradable polymers. J Environ Polym Degrad 5(2):91–95CrossRef
46.
go back to reference Siparsky GL, Voorhees KJ, Dorgan JR, Schilling K (1997) Water transport in polylactic acid (pla), pla/polycaprolactone copolymers, and pla/polyethylene glycol blends. J Environ Polym Degrad 5(3):125–136 Siparsky GL, Voorhees KJ, Dorgan JR, Schilling K (1997) Water transport in polylactic acid (pla), pla/polycaprolactone copolymers, and pla/polyethylene glycol blends. J Environ Polym Degrad 5(3):125–136
47.
go back to reference Srithep Y, Ellingham T, Peng J, Sabo R, Clemons C, Turng PSL (2013) Melt compounding of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/nanofibrillated cellulose nanocomposites. Polym Degrad Stab 98(8):1439–1449CrossRef Srithep Y, Ellingham T, Peng J, Sabo R, Clemons C, Turng PSL (2013) Melt compounding of poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/nanofibrillated cellulose nanocomposites. Polym Degrad Stab 98(8):1439–1449CrossRef
48.
go back to reference Starkweat HW, Brooks RE (1959) Effect of spherulites on the mechanical properties of nylon 66. J Appl Polym Sci 1(2):236–239CrossRef Starkweat HW, Brooks RE (1959) Effect of spherulites on the mechanical properties of nylon 66. J Appl Polym Sci 1(2):236–239CrossRef
49.
go back to reference Suttiwijitpukdee N, Sato H, Zhang J, Hashimoto T (2011a) Effects of intermolecular hydrogen bondings on isothermal crystallization behavior of polymer blends of cellulose acetate butyrate and poly(3-hydroxybutyrate). Macromolecules 44:3467–3477CrossRef Suttiwijitpukdee N, Sato H, Zhang J, Hashimoto T (2011a) Effects of intermolecular hydrogen bondings on isothermal crystallization behavior of polymer blends of cellulose acetate butyrate and poly(3-hydroxybutyrate). Macromolecules 44:3467–3477CrossRef
50.
go back to reference Suttiwijitpukdee N, Sato H, Zhang J, Hashimoto T, Ozaki Y (2011b) Intermolecular interactions and crystallization behaviors of biodegradable polymer blends between poly (3-hydroxybutyrate) and cellulose acetate butyrate studied by dsc, ft-ir, and waxd. Polymer 52(2):461–471CrossRef Suttiwijitpukdee N, Sato H, Zhang J, Hashimoto T, Ozaki Y (2011b) Intermolecular interactions and crystallization behaviors of biodegradable polymer blends between poly (3-hydroxybutyrate) and cellulose acetate butyrate studied by dsc, ft-ir, and waxd. Polymer 52(2):461–471CrossRef
51.
go back to reference Suttiwijitpukdee N, Sato H, Unger M, Ozaki Y (2012) Effects of hydrogen bond intermolecular interactions on the crystal spherulite of poly(3-hydroxybutyrate) and cellulose acetate butyrate blends: Studied by ft-ir and ft-nir imaging spectroscopy. Macromolecules 45(6):2736–2748CrossRef Suttiwijitpukdee N, Sato H, Unger M, Ozaki Y (2012) Effects of hydrogen bond intermolecular interactions on the crystal spherulite of poly(3-hydroxybutyrate) and cellulose acetate butyrate blends: Studied by ft-ir and ft-nir imaging spectroscopy. Macromolecules 45(6):2736–2748CrossRef
52.
go back to reference Thellen C, M C, Froio D, Auerbach M, Wirsen C, Ratto JA (2008) A processing, characterization and marine biodegradation study of melt-extruded polyhydroxyalkanoate (pha) films. J Polym Environ 16(1):1–11CrossRef Thellen C, M C, Froio D, Auerbach M, Wirsen C, Ratto JA (2008) A processing, characterization and marine biodegradation study of melt-extruded polyhydroxyalkanoate (pha) films. J Polym Environ 16(1):1–11CrossRef
53.
go back to reference Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5(4):249–261CrossRef Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5(4):249–261CrossRef
55.
go back to reference Weihua K, He Y, Askawa N, Inoue Y (2004) Effect of lignin particles as a nucleating agent on crystallization of poly(3-hydroxybutyrate). J Appl Polym Sci 94(6):2466–2474CrossRef Weihua K, He Y, Askawa N, Inoue Y (2004) Effect of lignin particles as a nucleating agent on crystallization of poly(3-hydroxybutyrate). J Appl Polym Sci 94(6):2466–2474CrossRef
57.
go back to reference Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4(6):3091–3101CrossRef Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4(6):3091–3101CrossRef
Metadata
Title
Effect of crystallization conditions on the physical properties of a two-layer glassine paper/polyhydroxybutyrate structure
Authors
Salman Safari
Theo G. M. van de Ven
Publication date
01-05-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 10/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-8929-9

Other articles of this Issue 10/2015

Journal of Materials Science 10/2015 Go to the issue

Premium Partners