Skip to main content
Top
Published in: Journal of Materials Science 10/2015

01-05-2015 | Original Paper

Preparation of low density hollow carbon fibers by bi-component gel-spinning method

Authors: Yaodong Liu, Han Gi Chae, Young Ho Choi, Satish Kumar

Published in: Journal of Materials Science | Issue 10/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sheath–core polyacrylonitrile (PAN)/poly(methyl methacrylate) fibers were spun through bi-component dry-jet gel-spinning method and were used for fabricating hollow carbon fibers. After optimizing stabilization and carbonization conditions, the resulting PAN-based hollow carbon fibers possessed an average strength and modulus of 3.16 and 275 GPa, respectively. Additionally, 1 wt% carbon nanotubes (CNTs) were added to PAN portion to form PAN+CNT sheath. The PAN+CNT-based hollow carbon fiber had an average strength of 3.24 GPa and modulus of 254 GPa. These hollow carbon fibers can be used for fabricating low density and high performance structural composite materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Minus ML, Kumar S (2005) The processing, properties, and structure of carbon fibers. JOM 57:52–58CrossRef Minus ML, Kumar S (2005) The processing, properties, and structure of carbon fibers. JOM 57:52–58CrossRef
3.
go back to reference Fitzer E (1989) PAN-based carbon fibers–present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon 27:621–645CrossRef Fitzer E (1989) PAN-based carbon fibers–present state and trend of the technology from the viewpoint of possibilities and limits to influence and to control the fiber properties by the process parameters. Carbon 27:621–645CrossRef
4.
go back to reference Yang MC, Yu DG (1995) Influence of activation time on the properties of polyaclylonitrile-based activated carbon hollow-fiber. J Appl Polym Sci 58:185–189CrossRef Yang MC, Yu DG (1995) Influence of activation time on the properties of polyaclylonitrile-based activated carbon hollow-fiber. J Appl Polym Sci 58:185–189CrossRef
5.
go back to reference Nakamura Y, Shibamoto T, Ozawa K et al (1981) Performance of cuprophane-carbon hollow fiber (CCHF) artificial-kidney. Artif Organs 5:332 Nakamura Y, Shibamoto T, Ozawa K et al (1981) Performance of cuprophane-carbon hollow fiber (CCHF) artificial-kidney. Artif Organs 5:332
6.
go back to reference Sun JF, Wu GX, Wang QR (2005) The effects of carbonization temperature on the properties and structure of PAN-based activated carbon hollow fiber. J Appl Polym Sci 97:2155–2160CrossRef Sun JF, Wu GX, Wang QR (2005) The effects of carbonization temperature on the properties and structure of PAN-based activated carbon hollow fiber. J Appl Polym Sci 97:2155–2160CrossRef
7.
go back to reference Yang MC, Yu DG (1996) Influence of precursor structure on the properties of polyacrylonitrile-based activated carbon hollow fiber. J Appl Polym Sci 59:1725–1731CrossRef Yang MC, Yu DG (1996) Influence of precursor structure on the properties of polyacrylonitrile-based activated carbon hollow fiber. J Appl Polym Sci 59:1725–1731CrossRef
8.
go back to reference Curtis PT, Travis SWG (1999) Hollow carbon fibres for high performance polymer composites. Plast Rubber Compos 28:201–209CrossRef Curtis PT, Travis SWG (1999) Hollow carbon fibres for high performance polymer composites. Plast Rubber Compos 28:201–209CrossRef
9.
go back to reference Barbosa-Coutinho E, Salim VMM, Borges CP (2003) Preparation of carbon hollow fiber membranes by pyrolysis of polyetherimide. Carbon 41:1707–1714CrossRef Barbosa-Coutinho E, Salim VMM, Borges CP (2003) Preparation of carbon hollow fiber membranes by pyrolysis of polyetherimide. Carbon 41:1707–1714CrossRef
10.
go back to reference Fawas EP, Kapantaidakis GC, Nolan JW, Mitropoulos AC, Kanellopoulos NK (2007) Preparation, characterization and gas permeation properties of carbon hollow fiber membranes based on Matrimid (R) 5218 precursor. J Mater Process Technol 186:102–110CrossRef Fawas EP, Kapantaidakis GC, Nolan JW, Mitropoulos AC, Kanellopoulos NK (2007) Preparation, characterization and gas permeation properties of carbon hollow fiber membranes based on Matrimid (R) 5218 precursor. J Mater Process Technol 186:102–110CrossRef
11.
go back to reference Jiang LY, Chung TS, Rajagopalan R (2007) Dual-layer hollow carbon fiber membranes for gas separation consisting of carbon and mixed matrix layers. Carbon 45:166–172CrossRef Jiang LY, Chung TS, Rajagopalan R (2007) Dual-layer hollow carbon fiber membranes for gas separation consisting of carbon and mixed matrix layers. Carbon 45:166–172CrossRef
12.
go back to reference Favvas EP, Kouvelos EP, Romanos GE, Pilatos GI, Mitropoulos AC, Kanellopoulos NK (2008) Characterization of highly selective microporous carbon hollow fiber membranes prepared from a commercial co-polyimide precursor. J Porous Mater 15:625–633CrossRef Favvas EP, Kouvelos EP, Romanos GE, Pilatos GI, Mitropoulos AC, Kanellopoulos NK (2008) Characterization of highly selective microporous carbon hollow fiber membranes prepared from a commercial co-polyimide precursor. J Porous Mater 15:625–633CrossRef
13.
go back to reference Kadla JF, Kubo S, Venditti RA, Gilbert RD (2002) Novel hollow core fibers prepared from lignin polypropylene blends. J Appl Polym Sci 85:1353–1355CrossRef Kadla JF, Kubo S, Venditti RA, Gilbert RD (2002) Novel hollow core fibers prepared from lignin polypropylene blends. J Appl Polym Sci 85:1353–1355CrossRef
14.
go back to reference Shi ZG, Zhang T, Xu LY, Feng YQ (2008) A template method for the synthesis of hollow carbon fibers. Microporous Mesoporous Mater 116:698–700CrossRef Shi ZG, Zhang T, Xu LY, Feng YQ (2008) A template method for the synthesis of hollow carbon fibers. Microporous Mesoporous Mater 116:698–700CrossRef
15.
go back to reference Sun LK, Cheng HF, Chu ZY, Zhou YJ (2009) Fabrication of pan-based hollow carbon fibers by coaxial electrospinning and two post-treatments. Acta Polym Sin 1:61–65CrossRef Sun LK, Cheng HF, Chu ZY, Zhou YJ (2009) Fabrication of pan-based hollow carbon fibers by coaxial electrospinning and two post-treatments. Acta Polym Sin 1:61–65CrossRef
17.
go back to reference Chae HG, Kumar S (2006) Rigid-rod polymeric fibers. J Appl Polym Sci 100:791–802CrossRef Chae HG, Kumar S (2006) Rigid-rod polymeric fibers. J Appl Polym Sci 100:791–802CrossRef
18.
go back to reference Liu Y, Chae HG, Kumar S (2011) Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part II: stabilization reaction kinetics and effect of gas environment. Carbon 49:4477–4486CrossRef Liu Y, Chae HG, Kumar S (2011) Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part II: stabilization reaction kinetics and effect of gas environment. Carbon 49:4477–4486CrossRef
19.
go back to reference Liu Y, Chae HG, Kumar S (2011) Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part I: effect of carbon nanotubes on stabilization. Carbon 49:4466–4476CrossRef Liu Y, Chae HG, Kumar S (2011) Gel-spun carbon nanotubes/polyacrylonitrile composite fibers. Part I: effect of carbon nanotubes on stabilization. Carbon 49:4466–4476CrossRef
20.
go back to reference Liu Y, Chae HG, Kumar S (2011) Gel-spun carbon nanotubes/polyacrylonitrile composite fibers.Part III: effect of stabilization conditions on carbon fiber properties. Carbon 49:4487–4496CrossRef Liu Y, Chae HG, Kumar S (2011) Gel-spun carbon nanotubes/polyacrylonitrile composite fibers.Part III: effect of stabilization conditions on carbon fiber properties. Carbon 49:4487–4496CrossRef
21.
go back to reference Liu Y, Choi YH, Chae HG, Gulgunje P, Kumar S (2013) Temperature dependent tensile behavior of gel-spun polyacrylonitrile and polyacrylonitrile/carbon nanotube composite fibers. Polymer 54:4003–4009CrossRef Liu Y, Choi YH, Chae HG, Gulgunje P, Kumar S (2013) Temperature dependent tensile behavior of gel-spun polyacrylonitrile and polyacrylonitrile/carbon nanotube composite fibers. Polymer 54:4003–4009CrossRef
22.
go back to reference Lyons KM, Newcomb BA, McDonald KJ, Chae HG, Kumar S (2014) Development of single filament testing procedure for polyacrylonitrile precursor and polyacrylonitrile-based carbon fibers, J Compos Mater Lyons KM, Newcomb BA, McDonald KJ, Chae HG, Kumar S (2014) Development of single filament testing procedure for polyacrylonitrile precursor and polyacrylonitrile-based carbon fibers, J Compos Mater
23.
go back to reference Chae HG, Choi YH, Minus ML, Kumar S (2009) Carbon nanotube reinforced small diameter polyacrylonitrile based carbon fiber. Compos Sci Technol 69:406–413CrossRef Chae HG, Choi YH, Minus ML, Kumar S (2009) Carbon nanotube reinforced small diameter polyacrylonitrile based carbon fiber. Compos Sci Technol 69:406–413CrossRef
Metadata
Title
Preparation of low density hollow carbon fibers by bi-component gel-spinning method
Authors
Yaodong Liu
Han Gi Chae
Young Ho Choi
Satish Kumar
Publication date
01-05-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 10/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-8922-3

Other articles of this Issue 10/2015

Journal of Materials Science 10/2015 Go to the issue

Premium Partners