Skip to main content
Top
Published in: Strength of Materials 4/2016

27-10-2016

Effect of Grinding Parameters on the Surface Quality of Cutting Tools Made of High-Speed Low-Alloy Steels

Authors: J. Jaworski, T. Trzepiecinski, F. Stachowicz

Published in: Strength of Materials | Issue 4/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The occurrence of defects caused by sharpening leads to the considerable variation of lifetime of cutting tools under identical processing conditions. The loss of cutting ability of cutting tools or the change of the blade original geometry influences the quality of the surface finish as well as both dimensional and shape accuracy of workpieces. The effect of the grinding parameters on the surface finish of selected high-speed steels has been investigated. The influence of the grinding parameters has been defined especially for surface roughness, grinding forces and grinding ratio with a wide range of grinding parameters. It is found that the value of average roughness (Ra ) parameter decreases together with an increase in the grinding depth and the feed length. Furthermore, the value of Ra increases proportionally to the grinding depth. To improve the efficiency of sharpening, it is required to increase the feed length other than the grinding depth.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. P. Sagar, G. V. S. Murthy, T. K. Das, et al., “Surface wave based ultrasonic technique for finding the optimal grinding condition of high speed steel (HSS) work rolls,” Steel Res. Int., 84, No. 2, 163–168 (2013).CrossRef S. P. Sagar, G. V. S. Murthy, T. K. Das, et al., “Surface wave based ultrasonic technique for finding the optimal grinding condition of high speed steel (HSS) work rolls,” Steel Res. Int., 84, No. 2, 163–168 (2013).CrossRef
2.
go back to reference I. Ebrahimzadeh and F. Ashrafizadeh, “A comparative study of surface deformation and quality of brass workpiece in contact with coated dies by pin-on-disc testing,” Int. J. Adv. Manuf. Tech., 77, No. 1, 609–620 (2015).CrossRef I. Ebrahimzadeh and F. Ashrafizadeh, “A comparative study of surface deformation and quality of brass workpiece in contact with coated dies by pin-on-disc testing,” Int. J. Adv. Manuf. Tech., 77, No. 1, 609–620 (2015).CrossRef
3.
go back to reference T. L. B. Tseng and Y. J. Kwon, “Characterization of machining quality attributes based on spindle probe, coordinate measuring machine, and surface roughness data,” J. Comput. Des. Eng., 1, No. 2, 128–139 (2014). T. L. B. Tseng and Y. J. Kwon, “Characterization of machining quality attributes based on spindle probe, coordinate measuring machine, and surface roughness data,” J. Comput. Des. Eng., 1, No. 2, 128–139 (2014).
4.
go back to reference J. A. Arsecularatne, L. C. Zhang, and C. Montross, “Wear and tool life of tungsten carbide, PCBN and PCD cutting tools,” Int. J. Mach. Tool Manu., 46, No. 5, 482–491 (2006).CrossRef J. A. Arsecularatne, L. C. Zhang, and C. Montross, “Wear and tool life of tungsten carbide, PCBN and PCD cutting tools,” Int. J. Mach. Tool Manu., 46, No. 5, 482–491 (2006).CrossRef
5.
go back to reference M. Sadilek, J. Dubsky, Z. Sadilkova, and Z. Poruba, “Cutting forces during turning with variable depth of cut,” Perspect. Sci., 7, 357–363 (2016).CrossRef M. Sadilek, J. Dubsky, Z. Sadilkova, and Z. Poruba, “Cutting forces during turning with variable depth of cut,” Perspect. Sci., 7, 357–363 (2016).CrossRef
6.
go back to reference M. Sadilek, J. Kratochvil, J. Petru, et al., “Cutting tool wear monitoring with the use of impedance layers,” Tehnicki Vjesnik/Technical Gazette, 21, No. 3, 639–644 (2014). M. Sadilek, J. Kratochvil, J. Petru, et al., “Cutting tool wear monitoring with the use of impedance layers,” Tehnicki Vjesnik/Technical Gazette, 21, No. 3, 639–644 (2014).
7.
go back to reference T. Bakða, T. Kroupa, P. Hanzl, and M. Zetek, “Durability of cutting tools during machining of very hard and solid materials,” Procedia Eng., 100, 1414–1423 (2015).CrossRef T. Bakða, T. Kroupa, P. Hanzl, and M. Zetek, “Durability of cutting tools during machining of very hard and solid materials,” Procedia Eng., 100, 1414–1423 (2015).CrossRef
8.
go back to reference A. M. El-Rakayby and B. Mills, “On the microstructure and mechanical properties of high-speed steels,” J. Mater. Sci., 23, No. 12, 4340–4344 (2013).CrossRef A. M. El-Rakayby and B. Mills, “On the microstructure and mechanical properties of high-speed steels,” J. Mater. Sci., 23, No. 12, 4340–4344 (2013).CrossRef
9.
go back to reference B. Wang, Z. Liu, Q. Song, et al., “Proper selection of cutting parameters and cutting tool angle to lower the specific cutting energy during high speed machining of 7050-T7451 aluminum alloy,” J. Clean. Prod., 129, 292–304 (2016).CrossRef B. Wang, Z. Liu, Q. Song, et al., “Proper selection of cutting parameters and cutting tool angle to lower the specific cutting energy during high speed machining of 7050-T7451 aluminum alloy,” J. Clean. Prod., 129, 292–304 (2016).CrossRef
10.
go back to reference I. S. Cho, A. Amanov, and J. D. Kim, “The effects of AlCrN coating, surface modification and their combination on the tribological properties of high speed steel under dry conditions,” Tribol. Int., 81, 61–72 (2015).CrossRef I. S. Cho, A. Amanov, and J. D. Kim, “The effects of AlCrN coating, surface modification and their combination on the tribological properties of high speed steel under dry conditions,” Tribol. Int., 81, 61–72 (2015).CrossRef
11.
go back to reference M. Bonek, “The investigation of microstructures and properties of high speed steel HS6-5-2-5 after laser alloying,” Arch. Metall. Mater., 59, No. 4, 1647–1651 (2014). M. Bonek, “The investigation of microstructures and properties of high speed steel HS6-5-2-5 after laser alloying,” Arch. Metall. Mater., 59, No. 4, 1647–1651 (2014).
12.
go back to reference B. Dolinðek, J. Ðuðtarðiè, and J. Kopaè, “Wear mechanisms of cutting tools in high-speed cutting processes,” Wear, 250, No. 1-12, 349–356 (2001).CrossRef B. Dolinðek, J. Ðuðtarðiè, and J. Kopaè, “Wear mechanisms of cutting tools in high-speed cutting processes,” Wear, 250, No. 1-12, 349–356 (2001).CrossRef
13.
go back to reference V. S. Sharma, S. K. Sharma, and A. K. Sharma, “Cutting tool wear estimation for turning,” J. Intell. Manuf., 19, No. 1, 99–108 (2008).CrossRef V. S. Sharma, S. K. Sharma, and A. K. Sharma, “Cutting tool wear estimation for turning,” J. Intell. Manuf., 19, No. 1, 99–108 (2008).CrossRef
14.
go back to reference S. Thamizhmanii and S. Hasan, “Effect of tool wear and forces by turning process on hard AISI 440 C and SCM 440 materials,” Int. J. Mater. Form., 2, No. 1, 531–534 (2009).CrossRef S. Thamizhmanii and S. Hasan, “Effect of tool wear and forces by turning process on hard AISI 440 C and SCM 440 materials,” Int. J. Mater. Form., 2, No. 1, 531–534 (2009).CrossRef
15.
go back to reference G. Boothroyd and W. A. Knight, Fundamentals of Machining and Machine Tools, 3rd edn, CRC Press, Taylor & Francis Group, Boca Raton–London–New York (2006). G. Boothroyd and W. A. Knight, Fundamentals of Machining and Machine Tools, 3rd edn, CRC Press, Taylor & Francis Group, Boca Raton–London–New York (2006).
16.
go back to reference J. Hu and Y. K. Chou, “Characterizations of cutting tool flank wear-land contact,” Wear, 263, No. 7-12, 1454–1458 (2007).CrossRef J. Hu and Y. K. Chou, “Characterizations of cutting tool flank wear-land contact,” Wear, 263, No. 7-12, 1454–1458 (2007).CrossRef
17.
go back to reference J. Jaworski and T. Trzepiecinski, “Research on durability of the turning tools made of high-speed low-alloy steels,” Kovove Materialy/Metallic Materials, 54, No. 1, 17–25 (2016).CrossRef J. Jaworski and T. Trzepiecinski, “Research on durability of the turning tools made of high-speed low-alloy steels,” Kovove Materialy/Metallic Materials, 54, No. 1, 17–25 (2016).CrossRef
18.
go back to reference Z. Pálmai, “Proposal for a new theoretical model of the cutting tool’s flank wear,” Wear, 303, No. 1-2, 437–445 (2013).CrossRef Z. Pálmai, “Proposal for a new theoretical model of the cutting tool’s flank wear,” Wear, 303, No. 1-2, 437–445 (2013).CrossRef
19.
go back to reference W. A. Sinopalnikow and S. N. Grigoriew, Reliability and Diagnosis of Technological Systems [in Russian], MSTU Stankin, Moscow (2003). W. A. Sinopalnikow and S. N. Grigoriew, Reliability and Diagnosis of Technological Systems [in Russian], MSTU Stankin, Moscow (2003).
20.
go back to reference N. V. Azarova, P. G. Matyukha, and V. V. Poltavets, “The specific cost of the surface grinding of vanadium high-speed steel with superabrasive wheels,” J. Superhard Mater., 30, No. 2, 122–127 (2008).CrossRef N. V. Azarova, P. G. Matyukha, and V. V. Poltavets, “The specific cost of the surface grinding of vanadium high-speed steel with superabrasive wheels,” J. Superhard Mater., 30, No. 2, 122–127 (2008).CrossRef
21.
go back to reference B. Pal, A. K. Chattopadhyay, and A. B. Chattopadhyay, “Performance study of brazed type cBN grinding wheel on hardened bearing steel and high speed steel,” Int. J. Precis. Eng. Man., 13, No. 5, 649–654 (2012).CrossRef B. Pal, A. K. Chattopadhyay, and A. B. Chattopadhyay, “Performance study of brazed type cBN grinding wheel on hardened bearing steel and high speed steel,” Int. J. Precis. Eng. Man., 13, No. 5, 649–654 (2012).CrossRef
22.
go back to reference F. Halila, C. Czarnota, and M. Nouari, “A new abrasive wear law for the sticking and sliding contacts when machining metallic alloys,” Wear, 315, No. 1-2, 125–135 (2014).CrossRef F. Halila, C. Czarnota, and M. Nouari, “A new abrasive wear law for the sticking and sliding contacts when machining metallic alloys,” Wear, 315, No. 1-2, 125–135 (2014).CrossRef
23.
go back to reference M. Urbaniak, “Effect of the conditioning of CBN wheels on the technological results of HS 6-5-2 steel grinding,” Arch. Civ. Mech. Eng., 6, No. 2, 31–39 (2006).CrossRef M. Urbaniak, “Effect of the conditioning of CBN wheels on the technological results of HS 6-5-2 steel grinding,” Arch. Civ. Mech. Eng., 6, No. 2, 31–39 (2006).CrossRef
24.
go back to reference J. P. Davim, Machining of Metal Matrix Composites, Springer-Verlag, London (2012).CrossRef J. P. Davim, Machining of Metal Matrix Composites, Springer-Verlag, London (2012).CrossRef
25.
go back to reference M. Nesluðan, I. Mrkvica, R. Èep, and P. Raos, “Heat distribution when nickel alloy grinding,” Tehnicki Vjesnik/Technical Gazette, 19, No. 4, 947–951 (2012). M. Nesluðan, I. Mrkvica, R. Èep, and P. Raos, “Heat distribution when nickel alloy grinding,” Tehnicki Vjesnik/Technical Gazette, 19, No. 4, 947–951 (2012).
26.
go back to reference K. H. Prabhudev, Handbook of Heat Treatment of Steels, Tata McGraw-Hill Publishing, New Delhi (2008). K. H. Prabhudev, Handbook of Heat Treatment of Steels, Tata McGraw-Hill Publishing, New Delhi (2008).
27.
go back to reference M. Kiyak, O. Cakir, and E. Altan, “A study on surface roughness in external cylindrical grinding,” in: Proc. of the 12th Int. Sci. Conf. on Achievements in Mechanical & Materials Engineering (Gliwice–Zakopane, Poland, 2003), pp. 459– 462. M. Kiyak, O. Cakir, and E. Altan, “A study on surface roughness in external cylindrical grinding,” in: Proc. of the 12th Int. Sci. Conf. on Achievements in Mechanical & Materials Engineering (Gliwice–Zakopane, Poland, 2003), pp. 459– 462.
28.
go back to reference T. Matsou, K. Matsubara, T. Morita, and H. Tsuwa, “Influence of working parameters in constant-load heavy grinding,” CIRP Ann.-Manuf. Techn., 32, No. 1, 233–236 (1983).CrossRef T. Matsou, K. Matsubara, T. Morita, and H. Tsuwa, “Influence of working parameters in constant-load heavy grinding,” CIRP Ann.-Manuf. Techn., 32, No. 1, 233–236 (1983).CrossRef
29.
go back to reference J. Borkowski, Wear and Durability of Grinding Wheels, PWN, Warsaw (1990). J. Borkowski, Wear and Durability of Grinding Wheels, PWN, Warsaw (1990).
30.
go back to reference E. Brinksmeier, C. Heinzel, and M. Wittmann, “Friction, cooling and lubrication in grinding,” CIRP Ann.-Manuf. Techn., 48, No. 2, 581–598 (1999).CrossRef E. Brinksmeier, C. Heinzel, and M. Wittmann, “Friction, cooling and lubrication in grinding,” CIRP Ann.-Manuf. Techn., 48, No. 2, 581–598 (1999).CrossRef
31.
go back to reference J. Borkowski and P. Borkowski, “The influence of elementary effects on grinding wheel wear,” Arch. Civ. Mech. Eng., 2, No. 1-2, 21–34 (2002). J. Borkowski and P. Borkowski, “The influence of elementary effects on grinding wheel wear,” Arch. Civ. Mech. Eng., 2, No. 1-2, 21–34 (2002).
Metadata
Title
Effect of Grinding Parameters on the Surface Quality of Cutting Tools Made of High-Speed Low-Alloy Steels
Authors
J. Jaworski
T. Trzepiecinski
F. Stachowicz
Publication date
27-10-2016
Publisher
Springer US
Published in
Strength of Materials / Issue 4/2016
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-016-9799-3

Other articles of this Issue 4/2016

Strength of Materials 4/2016 Go to the issue

Acknowledgments

Preface

Premium Partners