Skip to main content
Top
Published in: Journal of Materials Science 21/2016

27-07-2016 | Original Paper

Effect of hot calendering on physical properties and water vapor transfer resistance of bacterial cellulose films

Authors: V. L. D. Costa, A. P. Costa, M. E. Amaral, C. Oliveira, M. Gama, F. Dourado, R. M. Simões

Published in: Journal of Materials Science | Issue 21/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This work investigates the effect of hot calendering on bacterial cellulose (BC) films properties, aiming the achievement of good transparency and barrier property. A comparison was made using vegetal cellulose (VC) films on a similar basis weight of around 40 g.m−2. The optical–structural, mechanical, and barrier properties of BC films were studied and compared with those of highly beaten VC films. The Young’s moduli and tensile index of the BC films are much higher than those obtained for VC (14.5–16.2 vs 10.8–8.7 GPa and 146.7–64.8 vs 82.8–40.3 N.m.g−1), respectively. Calendering increased significantly the transparency of BC films from 53.0 to 73.0 %. The effect of BC ozonation was also studied. Oxidation with ozone somewhat enhanced the brightness and transparency of the BC films, but at the expenses of slightly lower mechanical properties. BC films exhibited a low water vapor transfer rate, when compared to VC films and this property decreased by around 70 % following calendering, for all films tested. These results show that calendering could be used as a process to obtain films suitable for food packaging applications, where transparency, good mechanical performance, and barrier properties are important. The BC films obtained herein are valuable products that could be a good alternative to the highly used plastics in this industry.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibers and nanocomposites. J Mater Sci 45:1–33. doi:10.12691/jmpc-2-1-1 CrossRef Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibers and nanocomposites. J Mater Sci 45:1–33. doi:10.​12691/​jmpc-2-1-1 CrossRef
2.
go back to reference Castro C, Zuluaga R, Putaux JL, Caro G, Mondragon I, Ganan P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohyd Polym 84:96–102CrossRef Castro C, Zuluaga R, Putaux JL, Caro G, Mondragon I, Ganan P (2011) Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohyd Polym 84:96–102CrossRef
3.
go back to reference Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107:2098–2107CrossRef Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107:2098–2107CrossRef
4.
go back to reference Santos SM, Carbajo JM, Gomez N, Quintana E, Ladero M, Sanchez A, Chinga-Carrasco G, Villar JC (2016) Use of bacterial cellulose in degraded paper restoration Part I: application on model papers. J Mater Sci 51(3):1541–1552. doi:10.1007/s10853-015-9476-0 CrossRef Santos SM, Carbajo JM, Gomez N, Quintana E, Ladero M, Sanchez A, Chinga-Carrasco G, Villar JC (2016) Use of bacterial cellulose in degraded paper restoration Part I: application on model papers. J Mater Sci 51(3):1541–1552. doi:10.​1007/​s10853-015-9476-0 CrossRef
5.
go back to reference Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
6.
go back to reference Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4:1–10CrossRef Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4:1–10CrossRef
7.
go back to reference Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stabil 59:101–106CrossRef Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stabil 59:101–106CrossRef
8.
go back to reference Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRef Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRef
9.
go back to reference Yano S, Maeda H, Nakajima M, Hagiwara T, Sawaguchi T (2008) Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles. Cellulose 15:111–120CrossRef Yano S, Maeda H, Nakajima M, Hagiwara T, Sawaguchi T (2008) Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles. Cellulose 15:111–120CrossRef
11.
go back to reference Mormino R, Bungay H (2003) Composites of bacterial cellulose and paper made with a rotating disk bioreactor. Appl Microbiol Biotechnol 62:503–506CrossRef Mormino R, Bungay H (2003) Composites of bacterial cellulose and paper made with a rotating disk bioreactor. Appl Microbiol Biotechnol 62:503–506CrossRef
12.
go back to reference Delgado-Aguilar M, González I, Pèlach MA, De La Fuente E, Negro C, Mutje P (2015) Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose 22:789–802CrossRef Delgado-Aguilar M, González I, Pèlach MA, De La Fuente E, Negro C, Mutje P (2015) Improvement of deinked old newspaper/old magazine pulp suspensions by means of nanofibrillated cellulose addition. Cellulose 22:789–802CrossRef
13.
go back to reference Mohite BV, Patil SV (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem 61:101–110CrossRef Mohite BV, Patil SV (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem 61:101–110CrossRef
14.
go back to reference Charles LA, Waterhouse JF (1987) The effect of supercalendering on the strength properties of paper. Institute of Paper Chemistry. Technical Paper Series, number 244 Charles LA, Waterhouse JF (1987) The effect of supercalendering on the strength properties of paper. Institute of Paper Chemistry. Technical Paper Series, number 244
15.
go back to reference Oliveira C, Carvalho V, Domingues L, Gama FM (2015) Recombinant CBM-fusion technology—applications overview. Biotechnol Adv 33(3–4):358–369CrossRef Oliveira C, Carvalho V, Domingues L, Gama FM (2015) Recombinant CBM-fusion technology—applications overview. Biotechnol Adv 33(3–4):358–369CrossRef
16.
go back to reference Kalia S, Dufresne A, Cherian BM, Kaith BS, Avérous L, Njuguna J (2011) Nassiopoulos (2011) cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 837875:1–35 Kalia S, Dufresne A, Cherian BM, Kaith BS, Avérous L, Njuguna J (2011) Nassiopoulos (2011) cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 837875:1–35
17.
go back to reference Lee K-Y, Tammelin T, Schulfter K, Kiiskinen H, Samela J, Bismarck A (2012) High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose. Appl. Mater. Interfaces 4(8):4078–4086CrossRef Lee K-Y, Tammelin T, Schulfter K, Kiiskinen H, Samela J, Bismarck A (2012) High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose. Appl. Mater. Interfaces 4(8):4078–4086CrossRef
18.
go back to reference Dhar P, Bhardwaj U, Kumar A, Katiyar V (2014) Cellulose nanocrystals: a potential nanofiller for food packaging applications. In: Komolprasert V, Turowski P (eds) Food Additives and Packaging, vol 1162. American Chemical Society, Washington, pp 197–239 Dhar P, Bhardwaj U, Kumar A, Katiyar V (2014) Cellulose nanocrystals: a potential nanofiller for food packaging applications. In: Komolprasert V, Turowski P (eds) Food Additives and Packaging, vol 1162. American Chemical Society, Washington, pp 197–239
19.
go back to reference Vernhes P, Bloch J, Blayo A, Pineaux P (2009) Effect of calendering on paper surface micro-structure: a multi-scale analysis. J Mater Process Technol 209:5204–5210CrossRef Vernhes P, Bloch J, Blayo A, Pineaux P (2009) Effect of calendering on paper surface micro-structure: a multi-scale analysis. J Mater Process Technol 209:5204–5210CrossRef
20.
go back to reference Leskelä M (1998) Optical properties chapter 4. In: Niskanen K (ed) Paper physics (Book 16). Fapet, Helsinki Leskelä M (1998) Optical properties chapter 4. In: Niskanen K (ed) Paper physics (Book 16). Fapet, Helsinki
21.
go back to reference Hestrin S, Schramm M (1954) Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352CrossRef Hestrin S, Schramm M (1954) Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352CrossRef
22.
go back to reference Sihtola H, Kyrklund B, Laamanen L, Palenius L (1963) Comparison and conversion of viscosity and DP values by different methods. Paperi Ja Puu 45(4a):225–232 Sihtola H, Kyrklund B, Laamanen L, Palenius L (1963) Comparison and conversion of viscosity and DP values by different methods. Paperi Ja Puu 45(4a):225–232
23.
go back to reference Segal L, Creely JJ, Martin AE Jr, Conrad CM (1962) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Tex Res J 29:786–794CrossRef Segal L, Creely JJ, Martin AE Jr, Conrad CM (1962) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Tex Res J 29:786–794CrossRef
24.
go back to reference Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585CrossRef Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9:1579–1585CrossRef
25.
go back to reference Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691CrossRef Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691CrossRef
26.
go back to reference González I, Alcalá M, Chinga-Carrasco G, Vilaseca F, Boufi S, Mutjé P (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21:2599–2609CrossRef González I, Alcalá M, Chinga-Carrasco G, Vilaseca F, Boufi S, Mutjé P (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21:2599–2609CrossRef
27.
go back to reference Pouyet F, Lachenal D, Das S, Hirat C (2013) Minimizing viscosity loss during totally chlorine-free bleaching of hardwood kraft pulp. BioResources 8(1):238–249 Pouyet F, Lachenal D, Das S, Hirat C (2013) Minimizing viscosity loss during totally chlorine-free bleaching of hardwood kraft pulp. BioResources 8(1):238–249
28.
go back to reference Tsouko E, Kourmentza C, Ladakis D, Kopsahelis N, Mandala I, Papanikolaou S, Paloukis F, Alves V, Koutinas A (2015) Bacterial cellulose production from industrial waste and by-product streams. Int J Mol Sci 16(7):14832–14849CrossRef Tsouko E, Kourmentza C, Ladakis D, Kopsahelis N, Mandala I, Papanikolaou S, Paloukis F, Alves V, Koutinas A (2015) Bacterial cellulose production from industrial waste and by-product streams. Int J Mol Sci 16(7):14832–14849CrossRef
29.
go back to reference Gil N, Gil C, Amaral ME, Costa AC, Duarte AP (2009) Use of enzymes to improve the refining of a bleached eucalyptus globulus kraft pulp. Biochem Eng J 46:89–95CrossRef Gil N, Gil C, Amaral ME, Costa AC, Duarte AP (2009) Use of enzymes to improve the refining of a bleached eucalyptus globulus kraft pulp. Biochem Eng J 46:89–95CrossRef
30.
go back to reference Retegi A, Gabilondo N, Peña C, Zuluaga R, Castro C, Gañan P, de la Caba K, Mondragon I (2010) Bacterial cellulose films with controlled microstructure–mechanical property relationships. Cellulose 17:661–669CrossRef Retegi A, Gabilondo N, Peña C, Zuluaga R, Castro C, Gañan P, de la Caba K, Mondragon I (2010) Bacterial cellulose films with controlled microstructure–mechanical property relationships. Cellulose 17:661–669CrossRef
31.
go back to reference Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structure. Biomacromolecules 11:2195–2198CrossRef Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structure. Biomacromolecules 11:2195–2198CrossRef
32.
go back to reference Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21(16):1595–1598CrossRef Nogi M, Iwamoto S, Nakagaito AN, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21(16):1595–1598CrossRef
33.
go back to reference Zhang L, Batchelor W, Varanasi S, Tsuzuki T, Wan X (2012) Effect of cellulose nanofiber dimensions on sheet forming through filtration. Cellulose 19:561–574CrossRef Zhang L, Batchelor W, Varanasi S, Tsuzuki T, Wan X (2012) Effect of cellulose nanofiber dimensions on sheet forming through filtration. Cellulose 19:561–574CrossRef
34.
go back to reference Biermann CJ (1996) Handbook of pulping and papermaking, 2nd edn. Academic Press, San Diego Biermann CJ (1996) Handbook of pulping and papermaking, 2nd edn. Academic Press, San Diego
35.
go back to reference Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A 80:93–97CrossRef Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A 80:93–97CrossRef
36.
go back to reference Yousefi H, Faezipour M, Hedjazi S, Mousavi MM, Azusa M, Heidari AH (2013) Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibers and fibers/ground cellulose nanofibers of canola straw. Ind Crop Prod 43:732–737CrossRef Yousefi H, Faezipour M, Hedjazi S, Mousavi MM, Azusa M, Heidari AH (2013) Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibers and fibers/ground cellulose nanofibers of canola straw. Ind Crop Prod 43:732–737CrossRef
37.
go back to reference Chirat C, Lachenal D (1994) Effect of ozone on pulp components application to bleaching of Kraft pulps. Holzforschung 48(Suppl):133–139CrossRef Chirat C, Lachenal D (1994) Effect of ozone on pulp components application to bleaching of Kraft pulps. Holzforschung 48(Suppl):133–139CrossRef
38.
go back to reference Fall AB, Lindström SB, Sundman O, Ödberg L, Wagberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27(18):11332–11338CrossRef Fall AB, Lindström SB, Sundman O, Ödberg L, Wagberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27(18):11332–11338CrossRef
39.
go back to reference Fendler A, Villanueva MP, Giminez E, Lagarón JM (2007) Characterization of the barrier properties of composites of HDPE and purified cellulose fibers. Cellulose 14:427–438CrossRef Fendler A, Villanueva MP, Giminez E, Lagarón JM (2007) Characterization of the barrier properties of composites of HDPE and purified cellulose fibers. Cellulose 14:427–438CrossRef
40.
go back to reference Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85CrossRef Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85CrossRef
41.
go back to reference Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014) High performance green barriers based on nanocellulose. Sustain. Chem. Process 2:23CrossRef Nair SS, Zhu JY, Deng Y, Ragauskas AJ (2014) High performance green barriers based on nanocellulose. Sustain. Chem. Process 2:23CrossRef
42.
go back to reference Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145. doi:10.1007/BF01139032 CrossRef Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145. doi:10.​1007/​BF01139032 CrossRef
43.
go back to reference Retulainen E, Moss P, Nieminen K (1997) Effect of calendering and wetting on paper properties. J Pulp Pap Sci 23(1):J34–J39 Retulainen E, Moss P, Nieminen K (1997) Effect of calendering and wetting on paper properties. J Pulp Pap Sci 23(1):J34–J39
Metadata
Title
Effect of hot calendering on physical properties and water vapor transfer resistance of bacterial cellulose films
Authors
V. L. D. Costa
A. P. Costa
M. E. Amaral
C. Oliveira
M. Gama
F. Dourado
R. M. Simões
Publication date
27-07-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 21/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0112-4

Other articles of this Issue 21/2016

Journal of Materials Science 21/2016 Go to the issue

Premium Partners