Skip to main content
Top
Published in: Journal of Materials Science 21/2016

19-07-2016 | Original Paper

Structural studies and macro-performances of hydroxyapatite-reinforced keratin thin films for biological applications

Authors: Huang Tu, Weidong Yu, Ling Duan

Published in: Journal of Materials Science | Issue 21/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this work, a series of wool keratin/hydroxyapatite (HA) composite films with different component ratios were fabricated by a modified solution casting technique. During the film-forming process, HAs deposited on the keratin matrix and bonded with amino acids of keratin molecules via electrostatic and intermolecular/water-bridged hydrogen bond interaction, which can be verified by the different morphologies of HA particles in water and keratin solution from scanning electron microscope and transmission electron microscope images. The microstructural transitions of hybrid films were examined by Fourier transform infrared spectroscopy and X-ray diffraction, indicating that HA particles expanded the crystalline area of composites without disrupting the original structures of keratin, and eventually enhanced the macro-performance of hybrid film. Nevertheless, excessive HA particles in keratin were liable to agglomerate and accumulate on the surface of films, which led to the weakening of tensile strength to some extent but improved the wettability of films and the biocompatibility and bioactivity compared to the pure keratin film. The composite films with 5 wt% HA granules were taken to be the optimum composition for practical application with good mechanical strength and biocompatibility; moreover, thermo gravimetric analysis was used to confirm the good thermostability of this kind of film.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hennessy KM, Pollot BE, Clem WC, Phipps MC, Sawyer AA, Culpepper BK, Bellis SL (2009) The effect of collagen I mimetic peptides on mesenchymal stem cell adhesion and differentiation, and on bone formation at hydroxyapatite surfaces. Biomaterials 30(10):1898–1909CrossRef Hennessy KM, Pollot BE, Clem WC, Phipps MC, Sawyer AA, Culpepper BK, Bellis SL (2009) The effect of collagen I mimetic peptides on mesenchymal stem cell adhesion and differentiation, and on bone formation at hydroxyapatite surfaces. Biomaterials 30(10):1898–1909CrossRef
2.
go back to reference Phipps MC, Clem WC, Grunda JM, Dines GA, Bellis SL (2012) Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials 33(2):524–534CrossRef Phipps MC, Clem WC, Grunda JM, Dines GA, Bellis SL (2012) Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Biomaterials 33(2):524–534CrossRef
3.
go back to reference Landi E, Valentini F, Tampieri A (2008) Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomater 4(6):1620–1626CrossRef Landi E, Valentini F, Tampieri A (2008) Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomater 4(6):1620–1626CrossRef
4.
go back to reference Yoon IK, Hwang JY, Seo JW, Jong WC, Kim HW, Shin US (2014) Carbon nanotube-gelatin-hydroxyapatite nanohybrids with multilayer core–shell structure for mimicking natural bone. Carbon 77:379–389CrossRef Yoon IK, Hwang JY, Seo JW, Jong WC, Kim HW, Shin US (2014) Carbon nanotube-gelatin-hydroxyapatite nanohybrids with multilayer core–shell structure for mimicking natural bone. Carbon 77:379–389CrossRef
5.
go back to reference Martinez-Vazquez FJ, Cabanas MV, Paris JL, Lozano D, Vallet-Regi M (2015) Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration. Acta Biomater 15:200–209CrossRef Martinez-Vazquez FJ, Cabanas MV, Paris JL, Lozano D, Vallet-Regi M (2015) Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration. Acta Biomater 15:200–209CrossRef
6.
go back to reference Gray JJ (2004) The interaction of proteins with solid surfaces. Curr Opin Struct Biol 14(1):110–115CrossRef Gray JJ (2004) The interaction of proteins with solid surfaces. Curr Opin Struct Biol 14(1):110–115CrossRef
7.
go back to reference Tachibana A, Kaneko S, Tanabe T, Yamauchi K (2005) Rapid fabrication of keratin–hydroxyapatite hybrid sponges toward osteoblast cultivation and differentiation. Biomaterials 26(3):297–302CrossRef Tachibana A, Kaneko S, Tanabe T, Yamauchi K (2005) Rapid fabrication of keratin–hydroxyapatite hybrid sponges toward osteoblast cultivation and differentiation. Biomaterials 26(3):297–302CrossRef
8.
go back to reference Rusu VM, Ng C-H, Wilke M, Tiersch B, Fratzl P, Peter MG (2005) Size-controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials. Biomaterials 26(26):5414–5426CrossRef Rusu VM, Ng C-H, Wilke M, Tiersch B, Fratzl P, Peter MG (2005) Size-controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials. Biomaterials 26(26):5414–5426CrossRef
9.
go back to reference Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7(7):2769–2781CrossRef Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7(7):2769–2781CrossRef
10.
go back to reference Zhao F, Yin Y, Lu WW, Leong JC, Zhang W, Zhang J, Zhang M, Yao K (2002) Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan–gelatin network composite scaffolds. Biomaterials 23(15):3227–3234CrossRef Zhao F, Yin Y, Lu WW, Leong JC, Zhang W, Zhang J, Zhang M, Yao K (2002) Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan–gelatin network composite scaffolds. Biomaterials 23(15):3227–3234CrossRef
11.
go back to reference Hu Q, Li B, Wang M, Shen J (2004) Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials 25(5):779–785CrossRef Hu Q, Li B, Wang M, Shen J (2004) Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials 25(5):779–785CrossRef
12.
go back to reference Chen JP, Chang YS (2011) Preparation and characterization of composite nanofibers of polycaprolactone and nanohydroxyapatite for osteogenic differentiation of mesenchymal stem cells. Colloids Surf B Biointerfaces 86(1):169–175CrossRef Chen JP, Chang YS (2011) Preparation and characterization of composite nanofibers of polycaprolactone and nanohydroxyapatite for osteogenic differentiation of mesenchymal stem cells. Colloids Surf B Biointerfaces 86(1):169–175CrossRef
13.
go back to reference Liao S, Wang W, Uo M, Ohkawa S, Akasaka T, Tamura K, Cui FZ, Watari F (2005) A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Biomaterials 26(36):7564–7571CrossRef Liao S, Wang W, Uo M, Ohkawa S, Akasaka T, Tamura K, Cui FZ, Watari F (2005) A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration. Biomaterials 26(36):7564–7571CrossRef
14.
go back to reference Mei F, Zhong JS, Yang XP, Ouyang XY, Zhang S, Hu XY, Ma Q, Lu JG, Ryu S, Deng XL (2007) Improved biological characteristics of poly(l-lactic acid) electrospun membrane by incorporation of multiwalled carbon nanotubes/hydroxyapatite nanoparticles. Biomacromolecules 8(12):3729–3735CrossRef Mei F, Zhong JS, Yang XP, Ouyang XY, Zhang S, Hu XY, Ma Q, Lu JG, Ryu S, Deng XL (2007) Improved biological characteristics of poly(l-lactic acid) electrospun membrane by incorporation of multiwalled carbon nanotubes/hydroxyapatite nanoparticles. Biomacromolecules 8(12):3729–3735CrossRef
15.
go back to reference Qu YL, Wang P, Man Y, Li YB, Zuo Y, Li JD (2010) Preliminary biocompatible evaluation of nano-hydroxyapatite/polyamide 66 composite porous membrane. Int J Nanomed 5:429–435CrossRef Qu YL, Wang P, Man Y, Li YB, Zuo Y, Li JD (2010) Preliminary biocompatible evaluation of nano-hydroxyapatite/polyamide 66 composite porous membrane. Int J Nanomed 5:429–435CrossRef
16.
go back to reference Li XY, Nan KH, Shi S, Chen H (2012) Preparation and characterization of nano-hydroxyapatite/chitosan cross-linking composite membrane intended for tissue engineering. Int J Biol Macromol 50(1):43–49CrossRef Li XY, Nan KH, Shi S, Chen H (2012) Preparation and characterization of nano-hydroxyapatite/chitosan cross-linking composite membrane intended for tissue engineering. Int J Biol Macromol 50(1):43–49CrossRef
17.
go back to reference Hunter KT, Ma T (2013) In vitro evaluation of hydroxyapatite–chitosan–gelatin composite membrane in guided tissue regeneration. J Biomed Mater Res A 101(4):1016–1025CrossRef Hunter KT, Ma T (2013) In vitro evaluation of hydroxyapatite–chitosan–gelatin composite membrane in guided tissue regeneration. J Biomed Mater Res A 101(4):1016–1025CrossRef
18.
go back to reference Chen F, Wang Z-C, Lin C-J (2002) Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. Mater Lett 57(4):858–861CrossRef Chen F, Wang Z-C, Lin C-J (2002) Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. Mater Lett 57(4):858–861CrossRef
19.
go back to reference Shen J-W, Wu T, Wang Q, Pan H-H (2008) Molecular simulation of protein adsorption and desorption on hydroxyapatite surfaces. Biomaterials 29(5):513–532CrossRef Shen J-W, Wu T, Wang Q, Pan H-H (2008) Molecular simulation of protein adsorption and desorption on hydroxyapatite surfaces. Biomaterials 29(5):513–532CrossRef
20.
go back to reference Zhou H, Wu T, Dong X, Wang Q, Shen J (2007) Adsorption mechanism of BMP-7 on hydroxyapatite (001) surfaces. Biochem Biophys Res Commun 361(1):91–96CrossRef Zhou H, Wu T, Dong X, Wang Q, Shen J (2007) Adsorption mechanism of BMP-7 on hydroxyapatite (001) surfaces. Biochem Biophys Res Commun 361(1):91–96CrossRef
21.
go back to reference Dong X, Wang Q, Wu T, Pan H (2007) Understanding adsorption–desorption dynamics of BMP-2 on hydroxyapatite (001) surface. Biophys J 93(3):750–759CrossRef Dong X, Wang Q, Wu T, Pan H (2007) Understanding adsorption–desorption dynamics of BMP-2 on hydroxyapatite (001) surface. Biophys J 93(3):750–759CrossRef
22.
go back to reference Chen X, Wang Q, Shen J, Pan H, Wu T (2007) Adsorption of leucine-rich amelogenin protein on hydroxyapatite (001) surface through –COO– Claws. J Phys Chem C 111(3):1284–1290CrossRef Chen X, Wang Q, Shen J, Pan H, Wu T (2007) Adsorption of leucine-rich amelogenin protein on hydroxyapatite (001) surface through –COO– Claws. J Phys Chem C 111(3):1284–1290CrossRef
23.
go back to reference Sookne AM, Harris M (1939) Electrophoretic studies of wool. Text Res J 9(12):437–443CrossRef Sookne AM, Harris M (1939) Electrophoretic studies of wool. Text Res J 9(12):437–443CrossRef
24.
go back to reference Rodrıguez-Lorenzo L, Vallet-Regı M, Ferreira J (2001) Colloidal processing of hydroxyapatite. Biomaterials 22(13):1847–1852CrossRef Rodrıguez-Lorenzo L, Vallet-Regı M, Ferreira J (2001) Colloidal processing of hydroxyapatite. Biomaterials 22(13):1847–1852CrossRef
25.
go back to reference Yamauchi K, Maniwa M, Mori T (1998) Cultivation of fibroblast cells on keratin-coated substrata. J Biomater Sci Polym Ed 9(3):259–270CrossRef Yamauchi K, Maniwa M, Mori T (1998) Cultivation of fibroblast cells on keratin-coated substrata. J Biomater Sci Polym Ed 9(3):259–270CrossRef
26.
go back to reference Hill P, Brantley H, Van Dyke M (2010) Some properties of keratin biomaterials: kerateines. Biomaterials 31(4):585–593CrossRef Hill P, Brantley H, Van Dyke M (2010) Some properties of keratin biomaterials: kerateines. Biomaterials 31(4):585–593CrossRef
27.
go back to reference Yamauchi K, Yamauchi A, Kusunoki T, Kohda A, Konishi Y (1996) Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films. J Biomed Mater Res 31(4):439–444CrossRef Yamauchi K, Yamauchi A, Kusunoki T, Kohda A, Konishi Y (1996) Preparation of stable aqueous solution of keratins, and physiochemical and biodegradational properties of films. J Biomed Mater Res 31(4):439–444CrossRef
28.
go back to reference Wang B, Yang W, McKittrick J, Meyers MA (2016) Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog Mater Sci 76:229–318CrossRef Wang B, Yang W, McKittrick J, Meyers MA (2016) Keratin: Structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog Mater Sci 76:229–318CrossRef
29.
go back to reference Dowling LM, Crewther WG, Inglis AS (1986) The primary structure of component 8c-1, a subunit protein of intermediate filaments in wool keratin. Relationships with proteins from other intermediate filaments. Biochem J 236(3):695–703CrossRef Dowling LM, Crewther WG, Inglis AS (1986) The primary structure of component 8c-1, a subunit protein of intermediate filaments in wool keratin. Relationships with proteins from other intermediate filaments. Biochem J 236(3):695–703CrossRef
30.
go back to reference Tachibana A, Furuta Y, Takeshima H, Tanabe T, Yamauchi K (2002) Fabrication of wool keratin sponge scaffolds for long-term cell cultivation. J Biotechnol 93(2):165–170CrossRef Tachibana A, Furuta Y, Takeshima H, Tanabe T, Yamauchi K (2002) Fabrication of wool keratin sponge scaffolds for long-term cell cultivation. J Biotechnol 93(2):165–170CrossRef
31.
go back to reference Simpson W, Crawshaw G (2002) Wool: science and technology. Elsevier, San DiegoCrossRef Simpson W, Crawshaw G (2002) Wool: science and technology. Elsevier, San DiegoCrossRef
32.
go back to reference Pierschbacher MD, Ruoslahti E (1984) Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci 81(19):5985–5988CrossRef Pierschbacher MD, Ruoslahti E (1984) Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci 81(19):5985–5988CrossRef
33.
go back to reference Humphries MJ, Komoriya A, Akiyama SK, Olden K, Yamada KM (1987) Identification of 2 distinct regions of the type-III connecting segment of human-plasma fibronectin that promote cell type-specific adhesion. J Biol Chem 262(14):6886–6892 Humphries MJ, Komoriya A, Akiyama SK, Olden K, Yamada KM (1987) Identification of 2 distinct regions of the type-III connecting segment of human-plasma fibronectin that promote cell type-specific adhesion. J Biol Chem 262(14):6886–6892
34.
go back to reference Rouse JG, Van Dyke ME (2010) A review of keratin-based biomaterials for biomedical applications. Materials 3(2):999–1014CrossRef Rouse JG, Van Dyke ME (2010) A review of keratin-based biomaterials for biomedical applications. Materials 3(2):999–1014CrossRef
35.
go back to reference Katoh K, Tanabe T, Yamauchi K (2004) Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity. Biomaterials 25(18):4255–4262CrossRef Katoh K, Tanabe T, Yamauchi K (2004) Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity. Biomaterials 25(18):4255–4262CrossRef
36.
go back to reference Li JS, Li Y, Li L, Mak AFT, Ko F, Qin L (2009) Preparation and biodegradation of electrospun PLLA/keratin nonwoven fibrous membrane. Polym Degrad Stab 94(10):1800–1807CrossRef Li JS, Li Y, Li L, Mak AFT, Ko F, Qin L (2009) Preparation and biodegradation of electrospun PLLA/keratin nonwoven fibrous membrane. Polym Degrad Stab 94(10):1800–1807CrossRef
37.
go back to reference Tanabe T, Okitsu N, Tachibana A, Yamauchi K (2002) Preparation and characterization of keratin–chitosan composite film. Biomaterials 23(3):817–825CrossRef Tanabe T, Okitsu N, Tachibana A, Yamauchi K (2002) Preparation and characterization of keratin–chitosan composite film. Biomaterials 23(3):817–825CrossRef
38.
go back to reference Tanabe T, Okitsu N, Yamauchi K (2004) Fabrication and characterization of chemically crosslinked keratin films. Mater Sci Eng C Biomimetic Supramol Syst 24(3):441–446CrossRef Tanabe T, Okitsu N, Yamauchi K (2004) Fabrication and characterization of chemically crosslinked keratin films. Mater Sci Eng C Biomimetic Supramol Syst 24(3):441–446CrossRef
40.
go back to reference Li J, Liu X, Zhang J, Zhang Y, Han Y, Hu J, Li Y (2012) Synthesis and characterization of wool keratin/hydroxyapatite nanocomposite. J Biomed Mater Res Part B-Appl Biomater 100B(4):896–902CrossRef Li J, Liu X, Zhang J, Zhang Y, Han Y, Hu J, Li Y (2012) Synthesis and characterization of wool keratin/hydroxyapatite nanocomposite. J Biomed Mater Res Part B-Appl Biomater 100B(4):896–902CrossRef
41.
go back to reference Thompson E, O’donnell I (1965) Studies on reduced wool V. A comparison of the two major components. Aust J Biol Sci 18(6):1207–1226CrossRef Thompson E, O’donnell I (1965) Studies on reduced wool V. A comparison of the two major components. Aust J Biol Sci 18(6):1207–1226CrossRef
42.
go back to reference Khattak M, Pu F, Curran JM, Hunt JA, D’Sa RA (2015) Human mesenchymal stem cell response to poly (ε-caprolactone/poly (methyl methacrylate) demixed thin films. J Mater Sci Mater Med 26(5):1–7CrossRef Khattak M, Pu F, Curran JM, Hunt JA, D’Sa RA (2015) Human mesenchymal stem cell response to poly (ε-caprolactone/poly (methyl methacrylate) demixed thin films. J Mater Sci Mater Med 26(5):1–7CrossRef
43.
go back to reference Kumar BR, Rao TS (2012) AFM Studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films. Dig J Nanomater Biostruct 7(4):1881–1889 Kumar BR, Rao TS (2012) AFM Studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films. Dig J Nanomater Biostruct 7(4):1881–1889
44.
go back to reference Nuraje N, Khan WS, Lei Y, Ceylan M, Asmatulu R (2013) Superhydrophobic electrospun nanofibers. J Mater Chem A 1(6):1929–1946CrossRef Nuraje N, Khan WS, Lei Y, Ceylan M, Asmatulu R (2013) Superhydrophobic electrospun nanofibers. J Mater Chem A 1(6):1929–1946CrossRef
Metadata
Title
Structural studies and macro-performances of hydroxyapatite-reinforced keratin thin films for biological applications
Authors
Huang Tu
Weidong Yu
Ling Duan
Publication date
19-07-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 21/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0140-0

Other articles of this Issue 21/2016

Journal of Materials Science 21/2016 Go to the issue

Premium Partners