Skip to main content
Top
Published in: Journal of Materials Science 21/2016

18-07-2016 | Original Paper

Rheology of fibrillated cellulose suspensions after surface modification by organic nanoparticle deposits

Authors: Pieter Samyn, Hesam Taheri

Published in: Journal of Materials Science | Issue 21/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The role of surface modification on rheological properties of fibrillated cellulose suspensions has been evaluated under creep, oscillatory, and rotational testing conditions. Two types of fibrillated cellulose were produced by mechanical homogenization, followed by the deposition of poly(styrene-co-maleimide) or SMI nanoparticles containing encapsulated palm oil on the fibril surfaces. During static creep testing, the modified fibrils changed into fully viscous properties, while native fibrils showed viscoelastic behavior at low stresses. A lower viscosity and reduction in hysteresis effects were experienced during steady-state rotational flow testing, together with a reduction in yield stress after modification. A study of viscoelastic properties by oscillatory testing illustrated that the cross-over point between storage and loss moduli was shifted towards lower strains by surface modification as an indication for the enhancement of liquid-like properties observed for SMI/oil nanoparticle dispersions, while the transition point was hardly affected by fibrillation. The variations in rheological properties were overruled by surface modification and reduction in hydrogen bonding interactions of modified fibrillated cellulose, whereas rheological properties of a physical mixture of native fibrillated cellulose suspension and nanoparticle dispersion remained dominated by the fibrillated cellulose.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillar cellulose: morphology and accessibility. J Appl Polym Sci Polym Symp 37:797–813 Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillar cellulose: morphology and accessibility. J Appl Polym Sci Polym Symp 37:797–813
2.
go back to reference Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef
3.
4.
go back to reference Rezayati-Charani P, Dehghani-Firouzabadi M, Afra E, Blademo Å, Naderi A, Lindström T (2013) Production of microfibrillated cellulose from unbleached kraft pulp of Kenaf and Scotch Pine and its effect on the properties of hardwood kraft: microfibrillated cellulose paper. Cellulose 20:2559–2567CrossRef Rezayati-Charani P, Dehghani-Firouzabadi M, Afra E, Blademo Å, Naderi A, Lindström T (2013) Production of microfibrillated cellulose from unbleached kraft pulp of Kenaf and Scotch Pine and its effect on the properties of hardwood kraft: microfibrillated cellulose paper. Cellulose 20:2559–2567CrossRef
5.
go back to reference Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46:609–620CrossRef Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46:609–620CrossRef
6.
go back to reference Nguyen HD, Mai TT, Nguyen NB, Dang TD, Le ML, Dang TT, Tran VM (2013) A novel method for preparing microfibrillated cellulose from bamboo fibers. Adv Nat Sci Nanosci Nanotechnol 4:015016–015025CrossRef Nguyen HD, Mai TT, Nguyen NB, Dang TD, Le ML, Dang TT, Tran VM (2013) A novel method for preparing microfibrillated cellulose from bamboo fibers. Adv Nat Sci Nanosci Nanotechnol 4:015016–015025CrossRef
7.
go back to reference Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73:371–377CrossRef Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73:371–377CrossRef
8.
go back to reference Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 63:337–345CrossRef Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 63:337–345CrossRef
9.
go back to reference Phiriyawirut M, Chotirat N, Phromsiri S, Lohapaisarn I (2010) Preparation and properties of natural rubber-cellulose microfibril nanocomposite films. Adv Mater Res 93–94:328–331CrossRef Phiriyawirut M, Chotirat N, Phromsiri S, Lohapaisarn I (2010) Preparation and properties of natural rubber-cellulose microfibril nanocomposite films. Adv Mater Res 93–94:328–331CrossRef
10.
go back to reference Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764CrossRef Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764CrossRef
11.
go back to reference Siqueira G, Tadokoro SK, Mathew AP, Oksman K (2010) Carrot nanofibers and nanocomposites applications. In: 7th international symposium on natural polymers and composites, Gramado, Brazil Siqueira G, Tadokoro SK, Mathew AP, Oksman K (2010) Carrot nanofibers and nanocomposites applications. In: 7th international symposium on natural polymers and composites, Gramado, Brazil
12.
go back to reference Habibi Y, Vignon MR (2007) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15:177–185CrossRef Habibi Y, Vignon MR (2007) Optimization of cellouronic acid synthesis by TEMPO-mediated oxidation of cellulose III from sugar beet pulp. Cellulose 15:177–185CrossRef
13.
go back to reference Alila S, Besbas I, Vilar MR, Mutjé P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crops Prod 41:250–259CrossRef Alila S, Besbas I, Vilar MR, Mutjé P, Boufi S (2013) Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): a comparative study. Ind Crops Prod 41:250–259CrossRef
14.
go back to reference Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
15.
go back to reference Salo T, Dimic-Misic K, Gane P, Paltakari J (2015) Application of pigmented coating colours containing MFC/NFC: coating properties and link to rheology. Nord Pulp Paper Res J 30:165–178CrossRef Salo T, Dimic-Misic K, Gane P, Paltakari J (2015) Application of pigmented coating colours containing MFC/NFC: coating properties and link to rheology. Nord Pulp Paper Res J 30:165–178CrossRef
16.
go back to reference Nechita P, Panaitescu DM (2013) Improving the dispersibility of cellulose microfibrillated structures in a polymer matrix by controlling drying conditions and chemical surface modifications. Cell Chem Technol 47:711–719 Nechita P, Panaitescu DM (2013) Improving the dispersibility of cellulose microfibrillated structures in a polymer matrix by controlling drying conditions and chemical surface modifications. Cell Chem Technol 47:711–719
17.
go back to reference Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80:677–686CrossRef Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80:677–686CrossRef
18.
go back to reference Peng Y, Gardner DJ, Han Y (2011) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102CrossRef Peng Y, Gardner DJ, Han Y (2011) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102CrossRef
19.
go back to reference Missoum K, Bras J, Belgacem MN (2012) Organization of aliphatic chains grafted on nanofibrillated cellulose and influence on final properties. Cellulose 19:1957–1973CrossRef Missoum K, Bras J, Belgacem MN (2012) Organization of aliphatic chains grafted on nanofibrillated cellulose and influence on final properties. Cellulose 19:1957–1973CrossRef
20.
go back to reference Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45CrossRef Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45CrossRef
21.
go back to reference Huang P, Zha Y, Kuga S, Wu M, Huang Y (2016) A versatile method for producing functionalized cellulose nanofibers and their application. Nanoscale 8:3753–3759CrossRef Huang P, Zha Y, Kuga S, Wu M, Huang Y (2016) A versatile method for producing functionalized cellulose nanofibers and their application. Nanoscale 8:3753–3759CrossRef
22.
go back to reference Littunen K, Hippi U, Johansson LS, Österberg M, Tammelin T, Laine J, Seppälä J (2011) Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr Polym 84:1039–1047CrossRef Littunen K, Hippi U, Johansson LS, Österberg M, Tammelin T, Laine J, Seppälä J (2011) Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr Polym 84:1039–1047CrossRef
23.
go back to reference Björkman U (2003) Break-up of suspended fibre networks. Nord Pulp Paper Res J 18:32–37CrossRef Björkman U (2003) Break-up of suspended fibre networks. Nord Pulp Paper Res J 18:32–37CrossRef
24.
go back to reference Lowys MP, Desbrieres J, Rinaudo M (2001) Rheological characterization of cellulosic microfibril suspensions: role of polymeric additives. Food Hydrocoll 15:25–32CrossRef Lowys MP, Desbrieres J, Rinaudo M (2001) Rheological characterization of cellulosic microfibril suspensions: role of polymeric additives. Food Hydrocoll 15:25–32CrossRef
25.
go back to reference Saarikoski E, Saarinen T, Salmela J, Seppälä J (2012) Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behaviour. Cellulose 19:647–659CrossRef Saarikoski E, Saarinen T, Salmela J, Seppälä J (2012) Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behaviour. Cellulose 19:647–659CrossRef
26.
go back to reference Goussé C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575CrossRef Goussé C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575CrossRef
27.
go back to reference Karppinen A, Vesterinen AH, Saarinen T, Inen PP, Seppälä J (2011) Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose 18:1381–1390CrossRef Karppinen A, Vesterinen AH, Saarinen T, Inen PP, Seppälä J (2011) Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose 18:1381–1390CrossRef
28.
go back to reference Naderi A, Lindström T (2014) Carboxymethylated nanofibrillated cellulose: effect of monovalent electrolytes on the rheological properties. Cellulose 21:3507–3514CrossRef Naderi A, Lindström T (2014) Carboxymethylated nanofibrillated cellulose: effect of monovalent electrolytes on the rheological properties. Cellulose 21:3507–3514CrossRef
29.
go back to reference Naderi A, Lindström T, Sundström J (2014) Carboxymethylated nanofibrillated cellulose: rheological studies. Cellulose 21:1561–1571CrossRef Naderi A, Lindström T, Sundström J (2014) Carboxymethylated nanofibrillated cellulose: rheological studies. Cellulose 21:1561–1571CrossRef
30.
go back to reference Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766CrossRef Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6:1745–1766CrossRef
31.
go back to reference Sorvari A, Saarinen T, Haavisto S, Salmela J, Vuoriluoto M, Seppälä J (2014) Modifying the flocculation of microfibrillated cellulose suspensions by soluble polysaccharides under conditions unfavorable to adsorption. Carbohydr Polym 106:283–292CrossRef Sorvari A, Saarinen T, Haavisto S, Salmela J, Vuoriluoto M, Seppälä J (2014) Modifying the flocculation of microfibrillated cellulose suspensions by soluble polysaccharides under conditions unfavorable to adsorption. Carbohydr Polym 106:283–292CrossRef
32.
go back to reference Korhonen MHJ, Sorvari A, Saarinen T, Seppälä J, Laine J (2014) Deflocculation of cellulosic suspensions with anionic high molecular weight polyelectrolytes. Bioresources 9:3550–3570CrossRef Korhonen MHJ, Sorvari A, Saarinen T, Seppälä J, Laine J (2014) Deflocculation of cellulosic suspensions with anionic high molecular weight polyelectrolytes. Bioresources 9:3550–3570CrossRef
33.
go back to reference Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isodai A (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84:579–583CrossRef Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isodai A (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84:579–583CrossRef
34.
go back to reference Veen SJ, Versluis P, Kuij A, Velikov KP (2015) Microstructure and rheology of microfibril-polymer networks. Soft Matter 11:8907–8912CrossRef Veen SJ, Versluis P, Kuij A, Velikov KP (2015) Microstructure and rheology of microfibril-polymer networks. Soft Matter 11:8907–8912CrossRef
35.
go back to reference Ahola S, Myllytie P, Österberg M, Teerinen T, Laine J (2008) Effect of polymer adsorption on cellulose nanofibril water binding capacity and aggregation. Bioresources 3:1315–1328 Ahola S, Myllytie P, Österberg M, Teerinen T, Laine J (2008) Effect of polymer adsorption on cellulose nanofibril water binding capacity and aggregation. Bioresources 3:1315–1328
36.
go back to reference Rastogi VK, Stanssens D, Samyn P (2016) Reaction efficiency and retention of poly(styrene-co-maleimide) nanoparticles deposited on fibrillated cellulose surfaces. Carbohydr Polym 141:244–262CrossRef Rastogi VK, Stanssens D, Samyn P (2016) Reaction efficiency and retention of poly(styrene-co-maleimide) nanoparticles deposited on fibrillated cellulose surfaces. Carbohydr Polym 141:244–262CrossRef
37.
go back to reference Samyn P, Van Nieuwkerke D, Schoukens G, Vonck L, Stanssens D, Van den Abbeele H (2012) Quality and statistical quantification of Brazilian vegetable oils using FTIR and Raman spectroscopy. Appl Spectrosc 66:552–565CrossRef Samyn P, Van Nieuwkerke D, Schoukens G, Vonck L, Stanssens D, Van den Abbeele H (2012) Quality and statistical quantification of Brazilian vegetable oils using FTIR and Raman spectroscopy. Appl Spectrosc 66:552–565CrossRef
38.
go back to reference Taheri H, Samyn P (2016) Effect of homogenization (microfluidization) process parameters in mechanical production of micro- and nanofibrillated cellulose on its rheological and morphological properties. Cellulose 23:1221–1238CrossRef Taheri H, Samyn P (2016) Effect of homogenization (microfluidization) process parameters in mechanical production of micro- and nanofibrillated cellulose on its rheological and morphological properties. Cellulose 23:1221–1238CrossRef
39.
go back to reference Samyn P, Van Nieuwkerke D, Schoukens G, Stanssens D, Vonck L, Van den Abbeele H (2015) Hybrid palm-oil/styrene maleimide nanoparticles synthesized in aqueous dispersion under different conditions. J Microencaps 32:336–348CrossRef Samyn P, Van Nieuwkerke D, Schoukens G, Stanssens D, Vonck L, Van den Abbeele H (2015) Hybrid palm-oil/styrene maleimide nanoparticles synthesized in aqueous dispersion under different conditions. J Microencaps 32:336–348CrossRef
40.
go back to reference Saarinen T, Haavisto S, Sorvari A, Salmela J, Seppälä J (2014) The effect of wall depletion on the rheology of microfibrillated cellulose water suspensions by optical coherence tomography. Cellulose 21:1261–1275CrossRef Saarinen T, Haavisto S, Sorvari A, Salmela J, Seppälä J (2014) The effect of wall depletion on the rheology of microfibrillated cellulose water suspensions by optical coherence tomography. Cellulose 21:1261–1275CrossRef
41.
go back to reference Nechyporchuk O, Belgacem MN, Pignon F (2014) Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena. Carbohydr Polym 112:432–439CrossRef Nechyporchuk O, Belgacem MN, Pignon F (2014) Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena. Carbohydr Polym 112:432–439CrossRef
42.
go back to reference Samyn P, Schoukens G, Stanssens D, Vonck L, Van den Abbeele H (2015) Kaolinite nanocomposite platelets synthesized by intercalation and imidization of poly(styrene-co-maleic anhydride). Materials 8:4363–4388CrossRef Samyn P, Schoukens G, Stanssens D, Vonck L, Van den Abbeele H (2015) Kaolinite nanocomposite platelets synthesized by intercalation and imidization of poly(styrene-co-maleic anhydride). Materials 8:4363–4388CrossRef
43.
go back to reference Ratna T, Philipp S, Paul Q (2010) Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology 8:279–285CrossRef Ratna T, Philipp S, Paul Q (2010) Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology 8:279–285CrossRef
44.
go back to reference Liang CY, Marchessault RH (1959) Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses. J Polym Sci 37:385–395CrossRef Liang CY, Marchessault RH (1959) Infrared spectra of crystalline polysaccharides. I. Hydrogen bonds in native celluloses. J Polym Sci 37:385–395CrossRef
45.
go back to reference Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. In: Salih MS (ed) Fourier transform—materials analysis. InTech, Crotia Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. In: Salih MS (ed) Fourier transform—materials analysis. InTech, Crotia
46.
go back to reference Garside P, Wyeth P (2003) Identification of cellulosic fibres by FTIR spectroscopy—thread and single fibre analysis by attenuated total reflectance. Stud Conserv 4:269–274CrossRef Garside P, Wyeth P (2003) Identification of cellulosic fibres by FTIR spectroscopy—thread and single fibre analysis by attenuated total reflectance. Stud Conserv 4:269–274CrossRef
47.
go back to reference Lee CM, Kubicki JD, Fan B, Zhong L, Jarvis MC, Kim SH (2015) Hydrogen-bonding network and OH stretch vibration of cellulose: comparison of computational modeling with polarized IR and SFG spectra. J Phys Chem B 119:15138–15149CrossRef Lee CM, Kubicki JD, Fan B, Zhong L, Jarvis MC, Kim SH (2015) Hydrogen-bonding network and OH stretch vibration of cellulose: comparison of computational modeling with polarized IR and SFG spectra. J Phys Chem B 119:15138–15149CrossRef
48.
go back to reference Liang CY, Marchessault RH (1959) Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm−1. J Polym Sci 39:269–278CrossRef Liang CY, Marchessault RH (1959) Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm−1. J Polym Sci 39:269–278CrossRef
49.
go back to reference Maréchal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183–186CrossRef Maréchal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struct 523:183–186CrossRef
50.
go back to reference Yuan L, Wan J, Ma Y, Wang Y, Huang M, Chen Y (2013) The content of different hydrogen bond models and crystal structure of eucalyptus fibers during beating. Bioresources 8:717–734 Yuan L, Wan J, Ma Y, Wang Y, Huang M, Chen Y (2013) The content of different hydrogen bond models and crystal structure of eucalyptus fibers during beating. Bioresources 8:717–734
51.
go back to reference Kondo T (1997) Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose 4:281–292CrossRef Kondo T (1997) Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose 4:281–292CrossRef
52.
go back to reference Guo Y, Wu P (2008) Investigation of the hydrogen-bond structure of cellulose diacetate by two-dimensional infrared correlation spectroscopy. Carbohydr Polym 74:509–513CrossRef Guo Y, Wu P (2008) Investigation of the hydrogen-bond structure of cellulose diacetate by two-dimensional infrared correlation spectroscopy. Carbohydr Polym 74:509–513CrossRef
53.
go back to reference Struszcyk H (1986) Modification of lignins. III. Reaction of lignosulfonates with chlorophosphazenes. J Macromol Sci A 23:973–992CrossRef Struszcyk H (1986) Modification of lignins. III. Reaction of lignosulfonates with chlorophosphazenes. J Macromol Sci A 23:973–992CrossRef
54.
go back to reference Pimentel GC, Sederholm CH (1956) Correlation of infrared stretching frequencies and hydrogen bond distances in crystals. J Chem Phys 24:639CrossRef Pimentel GC, Sederholm CH (1956) Correlation of infrared stretching frequencies and hydrogen bond distances in crystals. J Chem Phys 24:639CrossRef
55.
go back to reference Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324CrossRef Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324CrossRef
56.
go back to reference Åkerholm M, Hinterstoisser B, Salmén L (2004) Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydr Res 339:569–578CrossRef Åkerholm M, Hinterstoisser B, Salmén L (2004) Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydr Res 339:569–578CrossRef
57.
go back to reference Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391CrossRef Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391CrossRef
58.
go back to reference Janardhnan S, Sain M (2011) Targeted disruption of hydroxyl chemistry and crystallinity in natural fibers for the isolation of cellulose nanofibers via enzymatic treatment. Bioresources 6:1242–1250 Janardhnan S, Sain M (2011) Targeted disruption of hydroxyl chemistry and crystallinity in natural fibers for the isolation of cellulose nanofibers via enzymatic treatment. Bioresources 6:1242–1250
59.
go back to reference Liu Y, Thibodeaux D, Gamble G (2011) Development of Fourier-transform infrared spectroscopy in direct, non-destructive, and rapid determination of cotton fiber maturity. Textile Res J 81:1559–1567CrossRef Liu Y, Thibodeaux D, Gamble G (2011) Development of Fourier-transform infrared spectroscopy in direct, non-destructive, and rapid determination of cotton fiber maturity. Textile Res J 81:1559–1567CrossRef
60.
go back to reference Cintron MS, Hinchliffe DJ (2015) FT-IR examination of the development of secondary cell wall in cotton fibers. Fibers 3:30–40CrossRef Cintron MS, Hinchliffe DJ (2015) FT-IR examination of the development of secondary cell wall in cotton fibers. Fibers 3:30–40CrossRef
61.
go back to reference Taheri H, Stanssens D, Samyn P (2016) Rheological behaviour of oil-filled polymer nanoparticles in aqueous dispersion. Colloids Surf A 499:31–45CrossRef Taheri H, Stanssens D, Samyn P (2016) Rheological behaviour of oil-filled polymer nanoparticles in aqueous dispersion. Colloids Surf A 499:31–45CrossRef
62.
go back to reference Barnes HA (2000) A handbook of elementary rheology. Institute of Non-Newtonian Fluid Mechanics, University of Wales Press (Wales), Aberystwyth Barnes HA (2000) A handbook of elementary rheology. Institute of Non-Newtonian Fluid Mechanics, University of Wales Press (Wales), Aberystwyth
63.
go back to reference Dinand E, Chanzy H, Vignon M (1996) Parenchymal cell cellulose from sugar beet pulp: preparation and properties. Cellulose 3:183–188CrossRef Dinand E, Chanzy H, Vignon M (1996) Parenchymal cell cellulose from sugar beet pulp: preparation and properties. Cellulose 3:183–188CrossRef
64.
go back to reference Iotti M, Gregersen Ø, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19:137–145CrossRef Iotti M, Gregersen Ø, Moe S, Lenes M (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19:137–145CrossRef
65.
go back to reference Bröckel U, Meier W, Wagner G (2013) Product design and engineering: formulation of gels and pastes. Wiley, HeidelbergCrossRef Bröckel U, Meier W, Wagner G (2013) Product design and engineering: formulation of gels and pastes. Wiley, HeidelbergCrossRef
66.
go back to reference Herschel WH, Bulkley R (1926) Konsistenzmessungen von gummi-benzollosungen. Kolloid-Z 39:291–300CrossRef Herschel WH, Bulkley R (1926) Konsistenzmessungen von gummi-benzollosungen. Kolloid-Z 39:291–300CrossRef
Metadata
Title
Rheology of fibrillated cellulose suspensions after surface modification by organic nanoparticle deposits
Authors
Pieter Samyn
Hesam Taheri
Publication date
18-07-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 21/2016
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0216-x

Other articles of this Issue 21/2016

Journal of Materials Science 21/2016 Go to the issue

Premium Partners