Skip to main content
Top
Published in: Metallurgist 1-2/2019

22-05-2019

Effect of Impurities on the Phase Composition and Properties of a New Alloy of the Al–Y–Er–Zr–Sc System

Authors: A. V. Pozdnyakov, R. Yu. Barkov

Published in: Metallurgist | Issue 1-2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A comparative study is provided for the effect of Si and Fe impurities in relation to their concentration in the structure, phase composition, and mechanical properties of alloy Al–0.2Y–0.3Er–0.2Zr–0.05Sc. With a content of Fe and Si (in the amount of 0.15%), presence is noted of phases formed by iron and silicon impurities with an increased concentration of Zr, Er, and Y. These phases are not found in the structure of alloy with a lower concentration of Fe and Si (0.01%). Due to dilution of aluminum solid solution with Zr, Er and Y, alloy with an increased Fe and Si (0.15%) content shows a weaker hardening effect during annealing compared to alloy having a more supersaturated solid solution. Sc in both alloys is evenly distributed within the matrix of aluminum solid solution and does not form phases during crystallization. It is shown that the temperature for the start of recrystallization for these alloys is in the range 500–550 °C. The set of standard mechanical properties for sheet produced from these alloys is almost at the same level: yield strength of 155 MPa, ultimate strength of 166 MPa, elongation at 11.2% for alloy with 0.15% (Fe and Si) and 8.7% for alloy with 0.01% (Fe and Si). It is noted that after annealing (200 °C, 1 h) sheets hardness increases by 5 HV, which may point to aluminum solid solution decomposition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference C. Booth-Morrison, D. C., Dunand, and D. N. Seidman, “Coarsening resistance at 400 °C of precipitation-strengthened Al–Zr–Sc–Er alloys,” Acta Mater., 59, 7029–7042 (2011). C. Booth-Morrison, D. C., Dunand, and D. N. Seidman, “Coarsening resistance at 400 °C of precipitation-strengthened Al–Zr–Sc–Er alloys,” Acta Mater., 59, 7029–7042 (2011).
2.
go back to reference S. P. Wen, K. Y. Gao, Y. Li Y, et al., “Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy,” Scr. Mater., 65, 592–595 (2011). S. P. Wen, K. Y. Gao, Y. Li Y, et al., “Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy,” Scr. Mater., 65, 592–595 (2011).
3.
go back to reference C. Booth-Morrison, D. N. Seidman, and D. C. Dunand, “Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al–Zr–Sc–Si alloys,” Acta Mater., 60, 3643–3654 (2012).CrossRef C. Booth-Morrison, D. N. Seidman, and D. C. Dunand, “Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al–Zr–Sc–Si alloys,” Acta Mater., 60, 3643–3654 (2012).CrossRef
4.
go back to reference S. P. Wen, K. Y. Gao, H. Huang, et al., “Precipitation evolution in Al–Er–Zr alloys during aging at elevated temperature,” J. All. Comp., 574, 92–97 (2013).CrossRef S. P. Wen, K. Y. Gao, H. Huang, et al., “Precipitation evolution in Al–Er–Zr alloys during aging at elevated temperature,” J. All. Comp., 574, 92–97 (2013).CrossRef
5.
go back to reference Y. Zhang, H. Gao, Y. Kuai, et al., “Effects of Y additions on the precipitation and recrystallization of Al–Zr alloys,” Mater. Charact., 86, 1–8 (2013).CrossRef Y. Zhang, H. Gao, Y. Kuai, et al., “Effects of Y additions on the precipitation and recrystallization of Al–Zr alloys,” Mater. Charact., 86, 1–8 (2013).CrossRef
6.
go back to reference Y. Zhang, K. Gao, S. Wen, et al., “The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al–Er binary alloy,” J. Alloys Compd., 610, 27–34 (2014).CrossRef Y. Zhang, K. Gao, S. Wen, et al., “The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al–Er binary alloy,” J. Alloys Compd., 610, 27–34 (2014).CrossRef
7.
go back to reference Y. Zhang, J. Gu, Y. Tian, et al., “Microstructural evolution and mechanical property of Al–Zr and Al–Zr–Y alloys,” Mater. Sci. Eng., A616, 132–140 (2014).CrossRef Y. Zhang, J. Gu, Y. Tian, et al., “Microstructural evolution and mechanical property of Al–Zr and Al–Zr–Y alloys,” Mater. Sci. Eng., A616, 132–140 (2014).CrossRef
8.
go back to reference N. Q. Vo, D. C. Dunand, and D. N. Seidman, “Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er,” Acta Mater., 63, 73–85 (2014).CrossRef N. Q. Vo, D. C. Dunand, and D. N. Seidman, “Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er,” Acta Mater., 63, 73–85 (2014).CrossRef
9.
go back to reference A. De Luca, D. C. Dunand, and D. N. Seidman, “Mechanical properties and optimization of the aging of a dilute Al–Sc–Er–Zr–Si alloy with a high Zr/Sc ratio,” Acta Mater., 119, 35–42 (2016).CrossRef A. De Luca, D. C. Dunand, and D. N. Seidman, “Mechanical properties and optimization of the aging of a dilute Al–Sc–Er–Zr–Si alloy with a high Zr/Sc ratio,” Acta Mater., 119, 35–42 (2016).CrossRef
10.
go back to reference H. Gao, W. Feng, and Y. Wang, “Structural and compositional evolution of Al3(Zr,Y) precipitates in Al–Zr–Y alloy,” Mater. Charact., 121, 195–198 (2016).CrossRef H. Gao, W. Feng, and Y. Wang, “Structural and compositional evolution of Al3(Zr,Y) precipitates in Al–Zr–Y alloy,” Mater. Charact., 121, 195–198 (2016).CrossRef
11.
go back to reference H. Gao, W. Feng, J. Gu, et al., “Aging and recrystallization behavior of precipitation strengthened Al–0.25Zr–0.03Y alloy,” J. All. Comp., 696, 1039–1045 (2017).CrossRef H. Gao, W. Feng, J. Gu, et al., “Aging and recrystallization behavior of precipitation strengthened Al–0.25Zr–0.03Y alloy,” J. All. Comp., 696, 1039–1045 (2017).CrossRef
12.
go back to reference A. V. Pozdniakov, A. A. Aytmagambetov, S. V. Makhov, and V. I. Napalkov, “Effect of impurities of Fe and Si on the structure and strengthening upon annealing of the Al–0.2% Zr–0.1% Sc alloys with and without Y additive,” The Phys. Met. Metall., 118, No. 5, 470–484 (2017).CrossRef A. V. Pozdniakov, A. A. Aytmagambetov, S. V. Makhov, and V. I. Napalkov, “Effect of impurities of Fe and Si on the structure and strengthening upon annealing of the Al–0.2% Zr–0.1% Sc alloys with and without Y additive,” The Phys. Met. Metall., 118, No. 5, 470–484 (2017).CrossRef
13.
go back to reference A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, et al., “Effect of low additions of Y, Sm, Gd, Hf and Er on the structure and hardness of alloy Al–0.2% Zr–0.1% Sc,” Met. Sci. Heat Treat., 58, No. 9–10, 537–542 (2017).CrossRef A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, et al., “Effect of low additions of Y, Sm, Gd, Hf and Er on the structure and hardness of alloy Al–0.2% Zr–0.1% Sc,” Met. Sci. Heat Treat., 58, No. 9–10, 537–542 (2017).CrossRef
14.
go back to reference A. V. Pozdniakov, R. Y. Barkov, A. S. Prosviryakov, et al., “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compounds, 765, 15 October, 1–6 (2018). A. V. Pozdniakov, R. Y. Barkov, A. S. Prosviryakov, et al., “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compounds, 765, 15 October, 1–6 (2018).
15.
go back to reference L. Z. He, X. H. Li, X. T. Liu, et al., “Effects of homogenization on microstructures and properties of a new type Al–Mg–Mn–Zr–Ti–Er alloy,” Mater. Sci. Eng., A.527, 7510–7518 (2010).CrossRef L. Z. He, X. H. Li, X. T. Liu, et al., “Effects of homogenization on microstructures and properties of a new type Al–Mg–Mn–Zr–Ti–Er alloy,” Mater. Sci. Eng., A.527, 7510–7518 (2010).CrossRef
16.
go back to reference H. L. Hao, D. R. Ni, Z. Zhang, et al., “Microstructure and mechanical properties of Al–Mg–Er sheets jointed by friction stir welding,” Mater. Des., 52, 706–712 (2013).CrossRef H. L. Hao, D. R. Ni, Z. Zhang, et al., “Microstructure and mechanical properties of Al–Mg–Er sheets jointed by friction stir welding,” Mater. Des., 52, 706–712 (2013).CrossRef
17.
go back to reference Ya. Dongxi, Li. Xiaoyan, H. Dingyong, and H. Hui, “Effect of minor Er and Zr on microstructure and mechanical properties of Al–Mg–Mn alloy (5083) welded joints,” Mater. Sci. & Eng., A. 561, 226–231 (2013).CrossRef Ya. Dongxi, Li. Xiaoyan, H. Dingyong, and H. Hui, “Effect of minor Er and Zr on microstructure and mechanical properties of Al–Mg–Mn alloy (5083) welded joints,” Mater. Sci. & Eng., A. 561, 226–231 (2013).CrossRef
18.
go back to reference M. Song, K. Du, Z. Y. Huang, et al., “Deformation-induced dissolution and growth of precipitates in an Al–Mg–Er alloy during high-cycle fatigue,” Acta Mater., 81, 401–4019 (2014).CrossRef M. Song, K. Du, Z. Y. Huang, et al., “Deformation-induced dissolution and growth of precipitates in an Al–Mg–Er alloy during high-cycle fatigue,” Acta Mater., 81, 401–4019 (2014).CrossRef
19.
go back to reference S. P. Wen, W. Wang, W. H. Zhao, et al., “Precipitation hardening and recrystallization behavior of Al–Mg–Er–Zr alloys,” J. All. Comp., 687, 143–151 (2016).CrossRef S. P. Wen, W. Wang, W. H. Zhao, et al., “Precipitation hardening and recrystallization behavior of Al–Mg–Er–Zr alloys,” J. All. Comp., 687, 143–151 (2016).CrossRef
20.
go back to reference A. V. Pozdniakov, V. Yarasu, R. Yu. Barkov, et al., “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mat. Let., 202, 116–119 (2017).CrossRef A. V. Pozdniakov, V. Yarasu, R. Yu. Barkov, et al., “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mat. Let., 202, 116–119 (2017).CrossRef
21.
go back to reference H. Che, X. Jiang, N. Qiao, and X. Liu, “Effects of Er/Sr/Cu additions on the microstructure and mechanical properties of Al–Mg alloy during hot extrusion,” J. All. Comp., 708, 662–670 (2017).CrossRef H. Che, X. Jiang, N. Qiao, and X. Liu, “Effects of Er/Sr/Cu additions on the microstructure and mechanical properties of Al–Mg alloy during hot extrusion,” J. All. Comp., 708, 662–670 (2017).CrossRef
22.
go back to reference F. Cao, X. Zhu, Sh. Wang, et al., “Quasi-superplasticity of a banded-grained Al–Mg–Y alloy processed by continuous casting extrusion,” Mater. Sci. Eng., A690, 433–445 (2017).CrossRef F. Cao, X. Zhu, Sh. Wang, et al., “Quasi-superplasticity of a banded-grained Al–Mg–Y alloy processed by continuous casting extrusion,” Mater. Sci. Eng., A690, 433–445 (2017).CrossRef
23.
go back to reference R. Yu. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mat. Let., 217, 135–138 (2018).CrossRef R. Yu. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mat. Let., 217, 135–138 (2018).CrossRef
24.
go back to reference Y. I. Kosov and V. Y. Bazhin, “Synthesis of an aluminum–erbium master alloy from chloride–fluoride melts,” Russian Metallurgy (Metally), 2018, No. 2, 139–148 (2018).CrossRef Y. I. Kosov and V. Y. Bazhin, “Synthesis of an aluminum–erbium master alloy from chloride–fluoride melts,” Russian Metallurgy (Metally), 2018, No. 2, 139–148 (2018).CrossRef
25.
go back to reference V. Y. Bazhin, Y. I. Kosov, O. L. Lobacheva, and N. V. Dzhevaga, “Synthesis of aluminum-based scandium–yttrium master alloys, Russian Metallurgy (Metally), 2015, No. 7, 516–520 (2015).CrossRef V. Y. Bazhin, Y. I. Kosov, O. L. Lobacheva, and N. V. Dzhevaga, “Synthesis of aluminum-based scandium–yttrium master alloys, Russian Metallurgy (Metally), 2015, No. 7, 516–520 (2015).CrossRef
Metadata
Title
Effect of Impurities on the Phase Composition and Properties of a New Alloy of the Al–Y–Er–Zr–Sc System
Authors
A. V. Pozdnyakov
R. Yu. Barkov
Publication date
22-05-2019
Publisher
Springer US
Published in
Metallurgist / Issue 1-2/2019
Print ISSN: 0026-0894
Electronic ISSN: 1573-8892
DOI
https://doi.org/10.1007/s11015-019-00796-w

Other articles of this Issue 1-2/2019

Metallurgist 1-2/2019 Go to the issue

Premium Partners