Skip to main content
Top

2018 | OriginalPaper | Chapter

Effect of Long-Term Performance of EPS Geofoam on Lateral Earth Pressures on Retaining Walls

Authors : Satyanarayana Murty Dasaka, Vinil Kumar Gade

Published in: Geotechnics for Natural and Engineered Sustainable Technologies

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper presents short- and long-term influence of EPS geofoam to reduce static and traffic loading induced earth pressures on non-yielding rigid retaining walls. Grade III Indian standard sand and EPS15 geofoam (15 kg/m3 density) are used in model studies, as backfill and compressible inclusion at the interface between the retaining wall and backfill, respectively. Short- and long-term static and traffic loading model tests are performed with and without presence of geofoam. Model retaining wall is instrumented with pressure sensors to measure the lateral earth pressure on wall. Plastic markers are placed along the width of model plate, geofoam, and sand backfill to measure the movement of wall, geofoam compression, and backfill settlement, respectively. Compressive creep (CC) strains of 3% are induced on geofoam samples to simulate pseudo-long-term (PLT) behavior of geofoam. Static and traffic loads are applied on backfill using Servo-hydraulic actuator and surcharge load distribution system. Lateral thrust isolation efficiencies of 55.1–64.2% and 60.6–69.4% are observed under static and traffic loading conditions, respectively, in the presence of geofoam. Higher lateral thrust isolation efficiency, geofoam compression and backfill settlements are observed from the pseudo-long-term static and traffic loading on retaining wall compared to respective initial tests.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference ASTM D7180-05 (2005) Standard guide for use of expanded polystyrene (EPS) geofoam in geotechnical projects. Annual book of ASTM Standards, ASTM Intl., West Conshohocken, PA. ASTM D7180-05 (2005) Standard guide for use of expanded polystyrene (EPS) geofoam in geotechnical projects. Annual book of ASTM Standards, ASTM Intl., West Conshohocken, PA.
go back to reference Athanasopoulos, G. A., Pelekis, P. C., & Xenaki, V. C. (1999). Dynamic properties of EPS geofoam: An experimental investigation. Geosynthetics International, 6(3), 171–194.CrossRef Athanasopoulos, G. A., Pelekis, P. C., & Xenaki, V. C. (1999). Dynamic properties of EPS geofoam: An experimental investigation. Geosynthetics International, 6(3), 171–194.CrossRef
go back to reference Clough, G. W., & Duncan, J. M. (1991). Earth pressures, chapter in Foundation Engineering Handbook’, 2nd ed, edited by Hsai-Yang Fang (pp. 223–235). New York: van Nostrand Reinhold. Clough, G. W., & Duncan, J. M. (1991). Earth pressures, chapter in Foundation Engineering Handbook’, 2nd ed, edited by Hsai-Yang Fang (pp. 223–235). New York: van Nostrand Reinhold.
go back to reference Das, B. M. (2010). Principles of Geotechnical Engineering’, (7th ed), Cengage Learning. Das, B. M. (2010). Principles of Geotechnical Engineering’, (7th ed), Cengage Learning.
go back to reference Dave, T. N. (2013) Performance evaluation of EPS geofoam inclusion to reduce static and dynamic earth pressures on rigid retaining walls. PhD Thesis, Indian Institute of Technology Bombay, India. Dave, T. N. (2013) Performance evaluation of EPS geofoam inclusion to reduce static and dynamic earth pressures on rigid retaining walls. PhD Thesis, Indian Institute of Technology Bombay, India.
go back to reference Ertugrul, O. L., & Trandafir, A. C. (2011). Reduction of lateral earth forces acting on rigid non-yielding retaining walls by EPS geofoam inclusions. Journal of Materials in Civil Engineering, 23(12), 1711–1718. Ertugrul, O. L., & Trandafir, A. C. (2011). Reduction of lateral earth forces acting on rigid non-yielding retaining walls by EPS geofoam inclusions. Journal of Materials in Civil Engineering, 23(12), 1711–1718.
go back to reference Fang, Y. S., Chen, T. J., Holtz, R. D., & Lee, W. F. (2004). Reduction of boundary friction in model tests. Geotechnical testing journal (ASTM), 27(1), 3–12. Fang, Y. S., Chen, T. J., Holtz, R. D., & Lee, W. F. (2004). Reduction of boundary friction in model tests. Geotechnical testing journal (ASTM), 27(1), 3–12.
go back to reference Garg, K. G. (1998). Reatining wall with reinforced backfill-a case study. Geotextiles and Geomembranes, 16, 135–149.CrossRef Garg, K. G. (1998). Reatining wall with reinforced backfill-a case study. Geotextiles and Geomembranes, 16, 135–149.CrossRef
go back to reference Horvath, J. S. (1995). Geofoam geosynthetics. Scarsdale, NY: Horvath Engineering. Horvath, J. S. (1995). Geofoam geosynthetics. Scarsdale, NY: Horvath Engineering.
go back to reference Horvath, J. S. (1996). The compressible-inclusion function of EPS geofoam: an overview of concepts, applications, and products. In Proceedings of International symposium on EPS Construction Method-ISEPS Tokyo'96. Japan (pp. 71–81). Horvath, J. S. (1996). The compressible-inclusion function of EPS geofoam: an overview of concepts, applications, and products. In Proceedings of International symposium on EPS Construction Method-ISEPS Tokyo'96. Japan (pp. 71–81).
go back to reference Horvath, J. S. (1998). The compressible inclusion function of EPS geofoam: an overview of concepts, applications, and products. Res. Rpt. No. CE/GE-98, 1. Manhattan College Civil Engineering Deptartment, Bronx, NY. Horvath, J. S. (1998). The compressible inclusion function of EPS geofoam: an overview of concepts, applications, and products. Res. Rpt. No. CE/GE-98, 1. Manhattan College Civil Engineering Deptartment, Bronx, NY.
go back to reference Horvath, J. S. (1997). The compressible inclusion function of EPS geofoam. Geotextile and Geomembrane, 15(1–3), 77–120.CrossRef Horvath, J. S. (1997). The compressible inclusion function of EPS geofoam. Geotextile and Geomembrane, 15(1–3), 77–120.CrossRef
go back to reference Horvath, J. S. (2000). Integral-abutment bridges: Problems and innovative solutions using EPS geofoam and other geosynthetics. Res. Rpt. No. CE/GE-00, 2. Manhattan college civil engineering department, Bronx, NY. Horvath, J. S. (2000). Integral-abutment bridges: Problems and innovative solutions using EPS geofoam and other geosynthetics. Res. Rpt. No. CE/GE-00, 2. Manhattan college civil engineering department, Bronx, NY.
go back to reference IRC:6. (2014). Standard specifications and code of practice for road bridges, section: II—Loads and Stresses. Indian Road Congress. IRC:6. (2014). Standard specifications and code of practice for road bridges, section: II—Loads and Stresses. Indian Road Congress.
go back to reference Karpurapu, R., & Bathurst, R. J. (1992). Numerical investigation of controlled yielding of soil-retaining wall structures. Geotextiles and Geomembranes, 11, 115–131.CrossRef Karpurapu, R., & Bathurst, R. J. (1992). Numerical investigation of controlled yielding of soil-retaining wall structures. Geotextiles and Geomembranes, 11, 115–131.CrossRef
go back to reference Lee, H. J., & Roh, H. S. (2007). The use of recycled tire chips to minimize dynamic earth pressure during compaction of backfill. Construction and Building Materials, 21, 1016–1026.CrossRef Lee, H. J., & Roh, H. S. (2007). The use of recycled tire chips to minimize dynamic earth pressure during compaction of backfill. Construction and Building Materials, 21, 1016–1026.CrossRef
go back to reference Lee, J. H., Salgado, R., Bernal, A., & Lovell, C. W. (1999). Shredded tires and rubber-sand as lightweight material. Geotechnical and Geoenvironmental Engineering, 125(2), 132–141.CrossRef Lee, J. H., Salgado, R., Bernal, A., & Lovell, C. W. (1999). Shredded tires and rubber-sand as lightweight material. Geotechnical and Geoenvironmental Engineering, 125(2), 132–141.CrossRef
go back to reference Partos, A. M. & Kazaniwsky, P. M. (1987). Geoboard reduces lateral earth pressures, In Proceedings of Geosynthetics’87, Industrial Fabrics Association International (pp. 628–639). New Orleans, LA: USA. Partos, A. M. & Kazaniwsky, P. M. (1987). Geoboard reduces lateral earth pressures, In Proceedings of Geosynthetics’87, Industrial Fabrics Association International (pp. 628–639). New Orleans, LA: USA.
go back to reference Saran, S., Garg, K. G., & Bhandari, R. K. (1992). Retaining wall with reinforced cohesionless backfill. Journal of Geotechnical Engineering, 118(12), 1869–1888.CrossRef Saran, S., Garg, K. G., & Bhandari, R. K. (1992). Retaining wall with reinforced cohesionless backfill. Journal of Geotechnical Engineering, 118(12), 1869–1888.CrossRef
go back to reference Stark, T. D., Arellano, D., Horvath, J. S., & Leshchinsky, D. (2004). Geofoam applications in the design and construction of highway embankments, NCHRPWeb Document 65. Transp: Res. Board, Wash., DC. Stark, T. D., Arellano, D., Horvath, J. S., & Leshchinsky, D. (2004). Geofoam applications in the design and construction of highway embankments, NCHRPWeb Document 65. Transp: Res. Board, Wash., DC.
go back to reference Tawfig, K. S., & Caliendo, J. A. (1993). Laboratory investigation of polythene sheeting as a friction reducer in deep foundation. Geotextiles and Geomembranes, 12, 739–762.CrossRef Tawfig, K. S., & Caliendo, J. A. (1993). Laboratory investigation of polythene sheeting as a friction reducer in deep foundation. Geotextiles and Geomembranes, 12, 739–762.CrossRef
go back to reference Zarnani, S., & Bathurst, R. (2007). Experimental investigation of EPS geofoam seismic buffers using a shaking table tests. Geosynthetics International, 14(3), 165–177.CrossRef Zarnani, S., & Bathurst, R. (2007). Experimental investigation of EPS geofoam seismic buffers using a shaking table tests. Geosynthetics International, 14(3), 165–177.CrossRef
Metadata
Title
Effect of Long-Term Performance of EPS Geofoam on Lateral Earth Pressures on Retaining Walls
Authors
Satyanarayana Murty Dasaka
Vinil Kumar Gade
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7721-0_15