Skip to main content
Top
Published in: Journal of Nanoparticle Research 11/2014

01-11-2014 | Research Paper

Effect of magnetocrystalline anisotropy on the magnetic properties of electrodeposited Co–Pt nanowires

Authors: Muhammad Shahid Arshad, Sašo Šturm, Janez Zavašnik, Alvaro P. Espejo, Juan Escrig, Matej Komelj, Paul J. McGuiness, Spomenka Kobe, Kristina Žužek Rožman

Published in: Journal of Nanoparticle Research | Issue 11/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We report on the influence of the magnetocrystalline anisotropy on the easy magnetization axis, magnetization reversal and magnetic domain configurations of electrodeposited Co–Pt nanowires with lengths in the range of 4–6 µm and a diameter of 250 nm. The transmission electron microscopy and the X-ray diffractions revealed that the nanowires are composed of an intermixture of hcp- and fcc-textured crystal structures. The crystallographic orientations of both phases were such that the \(\left[ {00\bar{1}} \right]\) of the hcp phase and the [111] of the fcc phase are pointing almost perpendicular to the nanowire axis. This observation allows us to understand the perpendicular easy magnetization axis of the nanowire arrays measured with vibrating sample magnetometry. Analytical calculations of the angular dependence of the coercivity revealed that the magnetization reversal changes from vortex to transverse mode at the applied field angle θ = 30°. Fitting of the experiment to these calculations results in a perpendicular effective anisotropy constant (K eff = 2.6 × 104 J/m3) in nanowires which can be ascribed to the strong magnetocrystalline anisotropy. Furthermore, the magnetic domain configurations of individual nanowires of length range 4 < L < 6 µm are studied using magnetic force microscopy. This reveals a spatial magnetization modulation along the length of the nanowires, which was found to be length dependent. Such an intrinsic modulation is attributed to the competition between the magnetocrystalline anisotropy and the shape anisotropy in the nanowires. We believe that this interplay between anisotropies gives rise to a magnetic configuration involving vortex-like structure with alternating chirality along the length of the nanowires.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aboaf JA, Herd SR, Klokholm E (1983) Magnetic properties and structure of cobalt-platinum thin films. IEEE Trans Magn 19:1514–1519CrossRef Aboaf JA, Herd SR, Klokholm E (1983) Magnetic properties and structure of cobalt-platinum thin films. IEEE Trans Magn 19:1514–1519CrossRef
go back to reference Albrecht O, Zierold R, Allende S, Escrig J, Patzig C, Rauschenbach B, Nielsch K, Gorlitz D (2011) Experimental evidence for an angular dependent transition of magnetization reversal modes in magnetic nanotubes. J Appl Phys 109:093910–093915CrossRef Albrecht O, Zierold R, Allende S, Escrig J, Patzig C, Rauschenbach B, Nielsch K, Gorlitz D (2011) Experimental evidence for an angular dependent transition of magnetization reversal modes in magnetic nanotubes. J Appl Phys 109:093910–093915CrossRef
go back to reference Allende S, Escrig J, Altbir D, Salcedo E, Bahiana M (2008) Angular dependence of the transverse and vortex modes in magnetic nanotubes. EPJ B 66:37–40CrossRef Allende S, Escrig J, Altbir D, Salcedo E, Bahiana M (2008) Angular dependence of the transverse and vortex modes in magnetic nanotubes. EPJ B 66:37–40CrossRef
go back to reference Arshad MS, Pečko D, Šturm S, Escrig J, Komelj M, McGuiness PJ, Kobe S, Rožman KŽ (2014) Angular dependence of the coercivity in electrodeposited Co-Pt nanostructures with a tube-wire morphology. IEEE Trans Magn. doi: 10.1109/TMAG:20142320911 Accepted for Publication Arshad MS, Pečko D, Šturm S, Escrig J, Komelj M, McGuiness PJ, Kobe S, Rožman KŽ (2014) Angular dependence of the coercivity in electrodeposited Co-Pt nanostructures with a tube-wire morphology. IEEE Trans Magn. doi: 10.​1109/​TMAG:​20142320911 Accepted for Publication
go back to reference Bauer LA, Birenbaum NS, Meyer GJ (2004) Biological applications of high aspect ratio nanoparticles. J Mater Chem 14:517–526CrossRef Bauer LA, Birenbaum NS, Meyer GJ (2004) Biological applications of high aspect ratio nanoparticles. J Mater Chem 14:517–526CrossRef
go back to reference Bergmann G, Lu JG, Tao Y, Thompson RS (2008) Frustrated magnetization in Co nanowires: competition between crystal anisotropy and demagnetization energy. Phys Rev B 77:054415–054420CrossRef Bergmann G, Lu JG, Tao Y, Thompson RS (2008) Frustrated magnetization in Co nanowires: competition between crystal anisotropy and demagnetization energy. Phys Rev B 77:054415–054420CrossRef
go back to reference Bolzoni F, Leccabue F, Panizzieri R, Pareti L (1984) Magnetocrystalline anisotropy and phase transformation in Co–Pt alloy. IEEE Trans Magn 20:1625–1627CrossRef Bolzoni F, Leccabue F, Panizzieri R, Pareti L (1984) Magnetocrystalline anisotropy and phase transformation in Co–Pt alloy. IEEE Trans Magn 20:1625–1627CrossRef
go back to reference Bowling RJ, Packard RT, McCreery RL (1989) Activation of highly ordered pyrolytic graphite for heterogeneous electron transfer: relationship between electrochemical performance and carbon microstructure. J Am Chem Soc 111:1217–1223CrossRef Bowling RJ, Packard RT, McCreery RL (1989) Activation of highly ordered pyrolytic graphite for heterogeneous electron transfer: relationship between electrochemical performance and carbon microstructure. J Am Chem Soc 111:1217–1223CrossRef
go back to reference Bran C, Butenko AB, Kiselev NS, Wolff U, Schultz L, Hellwig O, Rößler UK, Bogdanov AN, Neu V (2009) Evolution of stripe and bubble domains in antiferromagnetically coupled [(Co/Pt)8/Co/Ru]18 multilayers. Phys Rev B 79:024430–024434CrossRef Bran C, Butenko AB, Kiselev NS, Wolff U, Schultz L, Hellwig O, Rößler UK, Bogdanov AN, Neu V (2009) Evolution of stripe and bubble domains in antiferromagnetically coupled [(Co/Pt)8/Co/Ru]18 multilayers. Phys Rev B 79:024430–024434CrossRef
go back to reference Bran C, Ivanov YP, Trabada DG, Tomkowicz J, del Real RP, Chubykalo-Fesenko O, Vazquez M (2013) Structural dependence of magnetic properties in co-based nanowires: experiments and micromagnetic simulations. IEEE Trans Magn 49:4491–4497CrossRef Bran C, Ivanov YP, Trabada DG, Tomkowicz J, del Real RP, Chubykalo-Fesenko O, Vazquez M (2013) Structural dependence of magnetic properties in co-based nanowires: experiments and micromagnetic simulations. IEEE Trans Magn 49:4491–4497CrossRef
go back to reference Carignan L-P, Lacroix C, Ouimet A, Ciureanu M, Yelon A, Ménard D (2007) Magnetic anisotropy in arrays of Ni, CoFeB, and Ni/Cu nanowires. J Appl Phys 102:023905–023915CrossRef Carignan L-P, Lacroix C, Ouimet A, Ciureanu M, Yelon A, Ménard D (2007) Magnetic anisotropy in arrays of Ni, CoFeB, and Ni/Cu nanowires. J Appl Phys 102:023905–023915CrossRef
go back to reference Cho JU, Wu J-H, Min JH, Ko SP, Soh JY, Liu QX, Kim YK (2006) Control of magnetic anisotropy of Co nanowires. J Magn Magn Mater 303:e281–e285CrossRef Cho JU, Wu J-H, Min JH, Ko SP, Soh JY, Liu QX, Kim YK (2006) Control of magnetic anisotropy of Co nanowires. J Magn Magn Mater 303:e281–e285CrossRef
go back to reference Ciureanu M, Beron F, Clime L, Ciureanu P, Yelon A, Ovari TA, Cochrane RW, Normandin F, Veres T (2005) Magnetic properties of electrodeposited CoFeB thin films and nanowire arrays. Electrochim Acta 50:4487–4497CrossRef Ciureanu M, Beron F, Clime L, Ciureanu P, Yelon A, Ovari TA, Cochrane RW, Normandin F, Veres T (2005) Magnetic properties of electrodeposited CoFeB thin films and nanowire arrays. Electrochim Acta 50:4487–4497CrossRef
go back to reference Cortés M, Gómez E, Vallés E (2013) Electrochemical growth of CoPt nanowires of different aspect ratio and their magnetic properties. J Electroanal Chem 689:69–75CrossRef Cortés M, Gómez E, Vallés E (2013) Electrochemical growth of CoPt nanowires of different aspect ratio and their magnetic properties. J Electroanal Chem 689:69–75CrossRef
go back to reference Cullity BD, Graham CD (2009) Introduction to magnetic materials, 2nd edn. Wiley, Hoboken Cullity BD, Graham CD (2009) Introduction to magnetic materials, 2nd edn. Wiley, Hoboken
go back to reference Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice-Hall Inc., Upper Saddle River Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice-Hall Inc., Upper Saddle River
go back to reference Dahmane Y, Cagnon L, Voiron J, Pairis S, Bacia M, Ortega L, Benbrahim N, Kadri A (2006) Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates. J Phys D Appl Phys 39:4523–4528CrossRef Dahmane Y, Cagnon L, Voiron J, Pairis S, Bacia M, Ortega L, Benbrahim N, Kadri A (2006) Magnetic and structural properties of electrodeposited CoPt and FePt nanowires in nanoporous alumina templates. J Phys D Appl Phys 39:4523–4528CrossRef
go back to reference De La Medina JT, Darques M, Piraux L, Encinas A (2009) Application of the anisotropy field distribution method to arrays of magnetic nanowires. J Appl Phys 105:023909–023918CrossRef De La Medina JT, Darques M, Piraux L, Encinas A (2009) Application of the anisotropy field distribution method to arrays of magnetic nanowires. J Appl Phys 105:023909–023918CrossRef
go back to reference Eagleton TS, Mallet J, Cheng X, Wang J, Chien C-L, Searson PC (2005) Electrodeposition of Co x Pt1−x thin films. J Electrochem Soc 152:C27–C31CrossRef Eagleton TS, Mallet J, Cheng X, Wang J, Chien C-L, Searson PC (2005) Electrodeposition of Co x Pt1−x thin films. J Electrochem Soc 152:C27–C31CrossRef
go back to reference Encinas-Oropesa A, Demand M, Piraux L, Ebels U, Huynen I (2001) Effect of dipolar interactions on the ferromagnetic resonance properties in arrays of magnetic nanowires. J Appl Phys 89:3CrossRef Encinas-Oropesa A, Demand M, Piraux L, Ebels U, Huynen I (2001) Effect of dipolar interactions on the ferromagnetic resonance properties in arrays of magnetic nanowires. J Appl Phys 89:3CrossRef
go back to reference Erickson RP, Mills aDL (2009) Theory of the undulating magnetic ground state of cylindrical cobalt nanowires. Phys Rev B 80:214410–214418CrossRef Erickson RP, Mills aDL (2009) Theory of the undulating magnetic ground state of cylindrical cobalt nanowires. Phys Rev B 80:214410–214418CrossRef
go back to reference Escrig J, Altbir D, Jaafar M, Navas D, Asenjo A, Vázquez M (2007) Remanence of Ni nanowire arrays: influence of size and labyrinth magnetic structure. Phys Rev B 75:184429–184434CrossRef Escrig J, Altbir D, Jaafar M, Navas D, Asenjo A, Vázquez M (2007) Remanence of Ni nanowire arrays: influence of size and labyrinth magnetic structure. Phys Rev B 75:184429–184434CrossRef
go back to reference Escrig J, Bachmann J, Jing J, Daub M, Altbir D, Nielsch K (2008) Crossover between two different magnetization reversal modes in arrays of iron oxide nanotubes. Phys Rev B 77:214421–214428CrossRef Escrig J, Bachmann J, Jing J, Daub M, Altbir D, Nielsch K (2008) Crossover between two different magnetization reversal modes in arrays of iron oxide nanotubes. Phys Rev B 77:214421–214428CrossRef
go back to reference Fert A, Piraux L (1999) Magnetic nanowires. J Magn Magn Mater 200:338–358CrossRef Fert A, Piraux L (1999) Magnetic nanowires. J Magn Magn Mater 200:338–358CrossRef
go back to reference Florian M, Joachim B, Shafqat K, Maria Eugenia Toimil M, Christina T, Hartmut F (2007) Preferred growth orientation of metallic fcc nanowires under direct and alternating electrodeposition conditions. Nanotechnology 18:135709–135716CrossRef Florian M, Joachim B, Shafqat K, Maria Eugenia Toimil M, Christina T, Hartmut F (2007) Preferred growth orientation of metallic fcc nanowires under direct and alternating electrodeposition conditions. Nanotechnology 18:135709–135716CrossRef
go back to reference Forster H, Schrefl T, Dittrich R, Suess D, Scholz W, Tsiantos V, Fidler J, Nielsch K, Hofmeister H, Kronmuller H, Fischer S (2002) Magnetization reversal in granular nanowires. IEEE Trans Magn 38:2580–2582CrossRef Forster H, Schrefl T, Dittrich R, Suess D, Scholz W, Tsiantos V, Fidler J, Nielsch K, Hofmeister H, Kronmuller H, Fischer S (2002) Magnetization reversal in granular nanowires. IEEE Trans Magn 38:2580–2582CrossRef
go back to reference Fu J, Cherevko S, Chung C-H (2008) Electroplating of metal nanotubes and nanowires in a high aspect-ratio nanotemplate. Electrochem Commun 10:514–518CrossRef Fu J, Cherevko S, Chung C-H (2008) Electroplating of metal nanotubes and nanowires in a high aspect-ratio nanotemplate. Electrochem Commun 10:514–518CrossRef
go back to reference Gao TR, Yin LF, Tian CS, Lu M, Sang H, Zhou SM (2006) Magnetic properties of Co–Pt alloy nanowire arrays in anodic alumina templates. J Magn Magn Mater 300:471–478CrossRef Gao TR, Yin LF, Tian CS, Lu M, Sang H, Zhou SM (2006) Magnetic properties of Co–Pt alloy nanowire arrays in anodic alumina templates. J Magn Magn Mater 300:471–478CrossRef
go back to reference Harp GR, Weller D, Rabedeau TA, Farrow RFC, Toney MF (1993) Magneto-optical Kerr spectroscopy of a new chemically ordered alloy: Co3Pt. Phys Rev Lett 71:2493–2496CrossRef Harp GR, Weller D, Rabedeau TA, Farrow RFC, Toney MF (1993) Magneto-optical Kerr spectroscopy of a new chemically ordered alloy: Co3Pt. Phys Rev Lett 71:2493–2496CrossRef
go back to reference Hassel C, Brands M, Lo FY, Wieck AD, Dumpich G (2006) Resistance of a single domain wall in (Co/Pt)7 multilayer nanowires. Phys Rev Lett 97:226805–226810CrossRef Hassel C, Brands M, Lo FY, Wieck AD, Dumpich G (2006) Resistance of a single domain wall in (Co/Pt)7 multilayer nanowires. Phys Rev Lett 97:226805–226810CrossRef
go back to reference Henry Y, Ounadjela K, Piraus L, Dubois S, George J-M, Duvail J-L (2001) Magnetic anisotropy and domain patterns in electrodeposited cobalt nanowires. EPJ B 20:35–44CrossRef Henry Y, Ounadjela K, Piraus L, Dubois S, George J-M, Duvail J-L (2001) Magnetic anisotropy and domain patterns in electrodeposited cobalt nanowires. EPJ B 20:35–44CrossRef
go back to reference Irshad MI, Ahmad F, Mohamed NM (2012) A review on nanowires as an alternative high density magnetic storage media. AIP Conf Proc 1482:625–632CrossRef Irshad MI, Ahmad F, Mohamed NM (2012) A review on nanowires as an alternative high density magnetic storage media. AIP Conf Proc 1482:625–632CrossRef
go back to reference Ivanov YP, Vivas LG, Asenjo A, Chuvilin A, Chubykalo-fesenko O, Vázquez M (2013a) Magnetic structure of a single-crystal hcp electrodeposited cobalt nanowire. Europhys Lett 102:17009–17014CrossRef Ivanov YP, Vivas LG, Asenjo A, Chuvilin A, Chubykalo-fesenko O, Vázquez M (2013a) Magnetic structure of a single-crystal hcp electrodeposited cobalt nanowire. Europhys Lett 102:17009–17014CrossRef
go back to reference Ivanov YP, Vázquez M, Chubykalo-Fesenko O (2013b) Magnetic reversal modes in cylindrical nanowires. J Phys D Appl Phys 46:485001–485012 Ivanov YP, Vázquez M, Chubykalo-Fesenko O (2013b) Magnetic reversal modes in cylindrical nanowires. J Phys D Appl Phys 46:485001–485012
go back to reference Kartopu G, Yalc O, Choy KL, Topkaya R, Kazan S, Akta B (2011) Size effects and origin of easy-axis in nickel nanowire arrays. J Appl Phys 109:033909-033901CrossRef Kartopu G, Yalc O, Choy KL, Topkaya R, Kazan S, Akta B (2011) Size effects and origin of easy-axis in nickel nanowire arrays. J Appl Phys 109:033909-033901CrossRef
go back to reference Khurshid H, Huang YH, Bonder MJ, Hadjipanayis GC (2009) Microstructural and magnetic properties of CoPt nanowires. J Magn Magn Mater 321:277–280CrossRef Khurshid H, Huang YH, Bonder MJ, Hadjipanayis GC (2009) Microstructural and magnetic properties of CoPt nanowires. J Magn Magn Mater 321:277–280CrossRef
go back to reference Kostevšek N, Rožman KŽ, Pečko D, Pihlar B, Kobe S (2014) A comparative study of the electrochemical deposition kinetics of iron-palladium alloys on a flat electrode and in a porous alumina template. Electrochim Acta 125:320–329CrossRef Kostevšek N, Rožman KŽ, Pečko D, Pihlar B, Kobe S (2014) A comparative study of the electrochemical deposition kinetics of iron-palladium alloys on a flat electrode and in a porous alumina template. Electrochim Acta 125:320–329CrossRef
go back to reference Kronmuller H, Fahnle M (2003) Micromagnetism and the microstructure of ferromagnetic solids. Cambridge University Press, Cambridge Kronmuller H, Fahnle M (2003) Micromagnetism and the microstructure of ferromagnetic solids. Cambridge University Press, Cambridge
go back to reference Landeros P, Allende S, Escrig J, Salcedo E, Altbir D, Vogel EE (2007) Reversal modes in magnetic nanotubes. Appl Phys Lett 90:102501–102503CrossRef Landeros P, Allende S, Escrig J, Salcedo E, Altbir D, Vogel EE (2007) Reversal modes in magnetic nanotubes. Appl Phys Lett 90:102501–102503CrossRef
go back to reference Lavin R, Denardin JC, Escrig J, Altbir D (2009a) Angular dependence of magnetic properties in Ni nanowire arrays. J Appl Phys 106:103903–103901–103903–103905CrossRef Lavin R, Denardin JC, Escrig J, Altbir D (2009a) Angular dependence of magnetic properties in Ni nanowire arrays. J Appl Phys 106:103903–103901–103903–103905CrossRef
go back to reference Lavin R, Denardin JC, Escrig J, Altbir D, Cortes A, Gomez H (2009b) Angular dependence of magnetic properties in Ni nanowire arrays. J Appl Phys 106:103903–103905CrossRef Lavin R, Denardin JC, Escrig J, Altbir D, Cortes A, Gomez H (2009b) Angular dependence of magnetic properties in Ni nanowire arrays. J Appl Phys 106:103903–103905CrossRef
go back to reference Lavin R, Denardin JC, Espejo AP, Cortes A, and Gomez H (2010) Magnetic properties of arrays of nanowires: anisotropy, interactions, and reversal modes. J Appl Phys 107:09B504-509B507 Lavin R, Denardin JC, Espejo AP, Cortes A, and Gomez H (2010) Magnetic properties of arrays of nanowires: anisotropy, interactions, and reversal modes. J Appl Phys 107:09B504-509B507
go back to reference Lavín R, Gallardo C, Palma JL, Escrig J, Denardin JC (2012) Angular dependence of the coercivity and remanence of ordered arrays of Co nanowires. J Magn Magn Mater 324:2360–2362CrossRef Lavín R, Gallardo C, Palma JL, Escrig J, Denardin JC (2012) Angular dependence of the coercivity and remanence of ordered arrays of Co nanowires. J Magn Magn Mater 324:2360–2362CrossRef
go back to reference Lebecki KM, Donahue MJ (2010) Comment on “Frustrated magnetization in Co nanowires: competition between crystal anisotropy and demagnetization energy”. Phys Rev B 82:096401–096405CrossRef Lebecki KM, Donahue MJ (2010) Comment on “Frustrated magnetization in Co nanowires: competition between crystal anisotropy and demagnetization energy”. Phys Rev B 82:096401–096405CrossRef
go back to reference Li F, Wang T, Ren L, Sun J (2004) Structure and magnetic properties of Co nanowires in self-assembled arrays. J Phys: Condens Matter 16:8053–8060 Li F, Wang T, Ren L, Sun J (2004) Structure and magnetic properties of Co nanowires in self-assembled arrays. J Phys: Condens Matter 16:8053–8060
go back to reference Liu Z, Chang P-C, Chang C-C, Galaktionov E, Bergmann G, Lu JG (2008) Shape anisotropy and magnetization modulation in hexagonal cobalt nanowires. Adv Funct Mater 18:1573–1578CrossRef Liu Z, Chang P-C, Chang C-C, Galaktionov E, Bergmann G, Lu JG (2008) Shape anisotropy and magnetization modulation in hexagonal cobalt nanowires. Adv Funct Mater 18:1573–1578CrossRef
go back to reference Mallet J, Yu-Zhang K, Chien C-L, Eagleton TS, Searson PC (2004) Fabrication and magnetic properties of fcc Co x Pt1−x nanowires. Appl Phys Lett 84:3900–3902CrossRef Mallet J, Yu-Zhang K, Chien C-L, Eagleton TS, Searson PC (2004) Fabrication and magnetic properties of fcc Co x Pt1−x nanowires. Appl Phys Lett 84:3900–3902CrossRef
go back to reference Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1966CrossRef Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1966CrossRef
go back to reference Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8:1739–1746CrossRef Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8:1739–1746CrossRef
go back to reference Mitchell DRG (2008) DiffTools: electron diffraction software tools for DigitalMicrograph™. Microsc Res Tech 71:588–593CrossRef Mitchell DRG (2008) DiffTools: electron diffraction software tools for DigitalMicrograph™. Microsc Res Tech 71:588–593CrossRef
go back to reference Motoyama M, Fukunaka Y, Sakka T, Ogata YH (2007) Initial stages of electrodeposition of metal nanowires in nanoporous templates. Electrochim Acta 53:205–212CrossRef Motoyama M, Fukunaka Y, Sakka T, Ogata YH (2007) Initial stages of electrodeposition of metal nanowires in nanoporous templates. Electrochim Acta 53:205–212CrossRef
go back to reference Netzelmann U (1990) Ferromagnetic resonance of particulate magnetic recording tapes. J Appl Phys 68:1800–1808CrossRef Netzelmann U (1990) Ferromagnetic resonance of particulate magnetic recording tapes. J Appl Phys 68:1800–1808CrossRef
go back to reference Neumann RF, Bahiana M, Vargas NM, Altbir D, Allende S, Gorlitz D, Nielsch K (2013) Domain wall control in wire-tube nanoelements. Appl Phys Lett 102:202407–202412CrossRef Neumann RF, Bahiana M, Vargas NM, Altbir D, Allende S, Gorlitz D, Nielsch K (2013) Domain wall control in wire-tube nanoelements. Appl Phys Lett 102:202407–202412CrossRef
go back to reference Ning G, Hongjun W, Eui-Hyeok Y (2010) An experimental study on ferromagnetic nickel nanowires functionalized with antibodies for cell separation. Nanotechnology 21:105107–105115CrossRef Ning G, Hongjun W, Eui-Hyeok Y (2010) An experimental study on ferromagnetic nickel nanowires functionalized with antibodies for cell separation. Nanotechnology 21:105107–105115CrossRef
go back to reference Ohtake M, Suzuki D, Kirino F, Futamoto M (2013) Metastable ordered phase formation in CoPt and Co3Pt alloy thin films epitaxially grown on single-crystal substrates. IEICE T Electron E96-C:1460–1468 Ohtake M, Suzuki D, Kirino F, Futamoto M (2013) Metastable ordered phase formation in CoPt and Co3Pt alloy thin films epitaxially grown on single-crystal substrates. IEICE T Electron E96-C:1460–1468
go back to reference Pan H, Liu B, Yi J, Poh C, Lim S, Ding J, Feng Y, Huan CHA, Lin J (2005) Growth of single-crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties. J Phys Chem B 109:3094–3098CrossRef Pan H, Liu B, Yi J, Poh C, Lim S, Ding J, Feng Y, Huan CHA, Lin J (2005) Growth of single-crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties. J Phys Chem B 109:3094–3098CrossRef
go back to reference Raposo V, Garcia JM, González JM, Vázquez M (2000) Long-range magnetostatic interactions in arrays of nanowires. J Magn Magn Mater 222:227–232CrossRef Raposo V, Garcia JM, González JM, Vázquez M (2000) Long-range magnetostatic interactions in arrays of nanowires. J Magn Magn Mater 222:227–232CrossRef
go back to reference Razee SSA, Staunton JB, Pinski FJ (1997) First-principles theory of magnetocrystalline anisotropy of disordered alloys: application to cobalt platinum. Phys Rev B 56:8082–8090CrossRef Razee SSA, Staunton JB, Pinski FJ (1997) First-principles theory of magnetocrystalline anisotropy of disordered alloys: application to cobalt platinum. Phys Rev B 56:8082–8090CrossRef
go back to reference Razee SSA, Staunton JB, Ginatempo B, Bruno E, Pinski FJ (2001) Ab initio theoretical description of the dependence of magnetocrystalline anisotropy on both compositional order and lattice distortion in transition metal alloys. Phys Rev B 64:014411–014415CrossRef Razee SSA, Staunton JB, Ginatempo B, Bruno E, Pinski FJ (2001) Ab initio theoretical description of the dependence of magnetocrystalline anisotropy on both compositional order and lattice distortion in transition metal alloys. Phys Rev B 64:014411–014415CrossRef
go back to reference Rosa WO, Vivas LG, Pirota KR, Asenjo A, Vázquez M (2012) Influence of aspect ratio and anisotropy distribution in ordered CoNi nanowire arrays. J Magn Magn Mater 324:3679–3682CrossRef Rosa WO, Vivas LG, Pirota KR, Asenjo A, Vázquez M (2012) Influence of aspect ratio and anisotropy distribution in ordered CoNi nanowire arrays. J Magn Magn Mater 324:3679–3682CrossRef
go back to reference Rožman KŽ, Šturm S, McGuiness PJ, Kobe S (2009) Hard magnetic Co-Pt-based nanotubes produced via direct electroplating. IEEE Trans Magn 45:4413–4416CrossRef Rožman KŽ, Šturm S, McGuiness PJ, Kobe S (2009) Hard magnetic Co-Pt-based nanotubes produced via direct electroplating. IEEE Trans Magn 45:4413–4416CrossRef
go back to reference Salazar-Aravena D, Corona RM, Goerlitz D, Nielsch K, Escrig J (2013) Magnetic properties of multisegmented cylindrical nanoparticles with alternating magnetic wire and tube segments. J Magn Magn Mater 346:171–174CrossRef Salazar-Aravena D, Corona RM, Goerlitz D, Nielsch K, Escrig J (2013) Magnetic properties of multisegmented cylindrical nanoparticles with alternating magnetic wire and tube segments. J Magn Magn Mater 346:171–174CrossRef
go back to reference Sayama J, Shimatsu T, Nemoto H, Okamoto S, Kitakami O, Aoi H (2011) Temperature dependence of the magnetic properties of L11-type Co–Ni–Pt ordered alloy films for thermally assisted recording media. J Appl Phys 110:013918–013923CrossRef Sayama J, Shimatsu T, Nemoto H, Okamoto S, Kitakami O, Aoi H (2011) Temperature dependence of the magnetic properties of L11-type Co–Ni–Pt ordered alloy films for thermally assisted recording media. J Appl Phys 110:013918–013923CrossRef
go back to reference Schlörb H, Haehnel V, Khatri MS, Srivastav A, Kumar A, Schultz L, Fähler S (2010) Magnetic nanowires by electrodeposition within templates. Phys Status Solidi B 247:2364–2379CrossRef Schlörb H, Haehnel V, Khatri MS, Srivastav A, Kumar A, Schultz L, Fähler S (2010) Magnetic nanowires by electrodeposition within templates. Phys Status Solidi B 247:2364–2379CrossRef
go back to reference Shamaila S, Sharif R, Riaz S, Ma M, Khaleeq-ur-Rahman M, Han XF (2008) Magnetic and magnetization properties of electrodeposited fcc CoPt nanowire arrays. J Magn Magn Mater 320:1803–1809CrossRef Shamaila S, Sharif R, Riaz S, Ma M, Khaleeq-ur-Rahman M, Han XF (2008) Magnetic and magnetization properties of electrodeposited fcc CoPt nanowire arrays. J Magn Magn Mater 320:1803–1809CrossRef
go back to reference Sorop T, Untiedt C, Luis F, Kröll M, Raşa M, de Jongh L (2003) Magnetization reversal of ferromagnetic nanowires studied by magnetic force microscopy. Phys Rev B 67:1–8CrossRef Sorop T, Untiedt C, Luis F, Kröll M, Raşa M, de Jongh L (2003) Magnetization reversal of ferromagnetic nanowires studied by magnetic force microscopy. Phys Rev B 67:1–8CrossRef
go back to reference Sorop TG, Nielsch K, Göring P, Kröll M, Blau W, Wehrspohn RB, Gösele U, De Jongh LJ (2004) Study of the magnetic hysteresis in arrays of ferromagnetic Fe nanowires as a function of the template filling fraction. J Magn Magn Mater 272–276:1656–1657CrossRef Sorop TG, Nielsch K, Göring P, Kröll M, Blau W, Wehrspohn RB, Gösele U, De Jongh LJ (2004) Study of the magnetic hysteresis in arrays of ferromagnetic Fe nanowires as a function of the template filling fraction. J Magn Magn Mater 272–276:1656–1657CrossRef
go back to reference Stoleriu L, Pinzaru C, Stancu A (2012) Micromagnetic analysis of switching and domain structure in amorphous metallic nanowires. Appl Phys Lett 100:122404–122408CrossRef Stoleriu L, Pinzaru C, Stancu A (2012) Micromagnetic analysis of switching and domain structure in amorphous metallic nanowires. Appl Phys Lett 100:122404–122408CrossRef
go back to reference Sun L, Hao Y, Chien CL, Searson aPC (2005) Tuning the properties of magnetic nanowires. IBM J Res Dev 49:79–102CrossRef Sun L, Hao Y, Chien CL, Searson aPC (2005) Tuning the properties of magnetic nanowires. IBM J Res Dev 49:79–102CrossRef
go back to reference Tian ML, Wang JU, Kurtz J, Mallouk TE, Chan MHW (2003) Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett 3:919–923CrossRef Tian ML, Wang JU, Kurtz J, Mallouk TE, Chan MHW (2003) Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett 3:919–923CrossRef
go back to reference Vázquez M, Pirota K, Torrejón J, Navas D, Hernández-Vélez M (2005) Magnetic behaviour of densely packed hexagonal arrays of Ni nanowires: Influence of geometric characteristics. J Magn Magn Mater 294:174–181CrossRef Vázquez M, Pirota K, Torrejón J, Navas D, Hernández-Vélez M (2005) Magnetic behaviour of densely packed hexagonal arrays of Ni nanowires: Influence of geometric characteristics. J Magn Magn Mater 294:174–181CrossRef
go back to reference Vega V, Böhnert T, Martens S, Waleczek M, Montero-Moreno JM, Görlitz D, Prida VM, Nielsch K (2012) Tuning the magnetic anisotropy of Co-Ni nanowires: comparison between single nanowires and nanowire arrays in hard-anodic aluminum oxide membranes. Nanotechnology 23:465709-465709 Vega V, Böhnert T, Martens S, Waleczek M, Montero-Moreno JM, Görlitz D, Prida VM, Nielsch K (2012) Tuning the magnetic anisotropy of Co-Ni nanowires: comparison between single nanowires and nanowire arrays in hard-anodic aluminum oxide membranes. Nanotechnology 23:465709-465709
go back to reference Vivas LG, Escrig J, Trabada DG, Badini-Confalonieri GA, Vázquez M (2012a) Magnetic anisotropy in ordered textured Co nanowires. Appl Phys Lett 100:252405–252409CrossRef Vivas LG, Escrig J, Trabada DG, Badini-Confalonieri GA, Vázquez M (2012a) Magnetic anisotropy in ordered textured Co nanowires. Appl Phys Lett 100:252405–252409CrossRef
go back to reference Vivas LG, Vazquez M, Escrig J, Allende S, Altbir D, Leitao DC, Araujo JP (2012b) Magnetic anisotropy in CoNi nanowire arrays: analytical calculations and experiments. Phys Rev B 85:035439–035443CrossRef Vivas LG, Vazquez M, Escrig J, Allende S, Altbir D, Leitao DC, Araujo JP (2012b) Magnetic anisotropy in CoNi nanowire arrays: analytical calculations and experiments. Phys Rev B 85:035439–035443CrossRef
go back to reference Wang N, Zhang J, Wang C, Shen TH (2010) A study on phase relations and texture of Co1−x Pt x (0.09<x<0.86) nanowire arrays. Mater Lett 64:2530–2533CrossRef Wang N, Zhang J, Wang C, Shen TH (2010) A study on phase relations and texture of Co1−x Pt x (0.09<x<0.86) nanowire arrays. Mater Lett 64:2530–2533CrossRef
go back to reference Xianghua H, Qingfang L, Jianbo W, Shiliang L, Yong R, Ronglin L, Fashen L (2009) Influence of crystal orientation on magnetic properties of hcp Co nanowire arrays. J Phys D Appl Phys 42:095005–095009CrossRef Xianghua H, Qingfang L, Jianbo W, Shiliang L, Yong R, Ronglin L, Fashen L (2009) Influence of crystal orientation on magnetic properties of hcp Co nanowire arrays. J Phys D Appl Phys 42:095005–095009CrossRef
go back to reference Yang S, Zhu H, Yu D, Jin Z, Tang S, Du Y (2000) Preparation and magnetic property of Fe nanowire array. J Magn Magn Mater 222:97–100CrossRef Yang S, Zhu H, Yu D, Jin Z, Tang S, Du Y (2000) Preparation and magnetic property of Fe nanowire array. J Magn Magn Mater 222:97–100CrossRef
go back to reference Zana I, Zangari G, Park J-W, Allen MG (2004) Electrodeposited Co–Pt micron-size magnets with strong perpendicular magnetic anisotropy for MEMS applications. J Magn Magn Mater 272–276:E1775–E1776CrossRef Zana I, Zangari G, Park J-W, Allen MG (2004) Electrodeposited Co–Pt micron-size magnets with strong perpendicular magnetic anisotropy for MEMS applications. J Magn Magn Mater 272–276:E1775–E1776CrossRef
go back to reference Zhang J, Li W, Jones GA, Shen TH (2006) Composition-dependent structural and magnetic properties of Co1−x Pt x (0.09 <= x <= 0.86) nanowire arrays. J Appl Phys 99:08Q502–08Q503 Zhang J, Li W, Jones GA, Shen TH (2006) Composition-dependent structural and magnetic properties of Co1−x Pt x (0.09 <= x <= 0.86) nanowire arrays. J Appl Phys 99:08Q502–08Q503
go back to reference Zhang J, Jones GA, Shen TH, Donnelly SE, Li G (2007) Monocrystalline hexagonal-close-packed and polycrystalline face-centered-cubic Co nanowire arrays fabricated by pulse dc electrodeposition. J Appl Phys 101:054310–054315CrossRef Zhang J, Jones GA, Shen TH, Donnelly SE, Li G (2007) Monocrystalline hexagonal-close-packed and polycrystalline face-centered-cubic Co nanowire arrays fabricated by pulse dc electrodeposition. J Appl Phys 101:054310–054315CrossRef
Metadata
Title
Effect of magnetocrystalline anisotropy on the magnetic properties of electrodeposited Co–Pt nanowires
Authors
Muhammad Shahid Arshad
Sašo Šturm
Janez Zavašnik
Alvaro P. Espejo
Juan Escrig
Matej Komelj
Paul J. McGuiness
Spomenka Kobe
Kristina Žužek Rožman
Publication date
01-11-2014
Publisher
Springer Netherlands
Published in
Journal of Nanoparticle Research / Issue 11/2014
Print ISSN: 1388-0764
Electronic ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-014-2688-4

Other articles of this Issue 11/2014

Journal of Nanoparticle Research 11/2014 Go to the issue

Premium Partners