Skip to main content
Top
Published in: Journal of Iron and Steel Research International 11/2020

03-06-2020 | Original Paper

Effect of mechanical activation on enhancement of carbothermal reduction of nickel slag

Authors: Xiao-ming Li, Hai-bo Yang, Jin-bang Ruan, Yi Li, Zhen-yu Wen, Xiang-dong Xing

Published in: Journal of Iron and Steel Research International | Issue 11/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effects of mechanical activation on particle size distribution, crystalline phase, morphology, and mechanical energy storage of nickel slag were studied. Then, the direct reduction experiments of mechanically activated nickel slag mixed with reducing agent graphite powder were performed under conditions of 873–1273 K and reduction for 30–70 min. The results show that after 12 h of activation, 90% of the nickel slag has a particle diameter less than 1.05 μm, and the total energy storage is 1790.4 kJ mol−1. With the extension of the mechanical activation duration, the intensity of the diffraction peaks of the main crystalline phases Fe2SiO4 and Mg2SiO4 in the nickel slag decreases. Mechanical activation is also an effective means to enhance the reduction of nickel slag. With the extension of the activation time, the reduction effect of the nickel slag and metallization degree increase. After 12 h of mechanical activation, the nickel slag was reduced at 1273 K for 70 min, and the metallization degree of the reduced product could reach 83.12%.
Literature
[1]
go back to reference A.M. Mitrašinović, A. Wolf, J. Sep. Sci. Technol. 50 (2015) 2553–2558. A.M. Mitrašinović, A. Wolf, J. Sep. Sci. Technol. 50 (2015) 2553–2558.
[2]
go back to reference Z.J. Wang, W. Ni, K.Q. Li, X.Y. Huang, L.Q. Zhu, Int. J. Miner. Metall. Mater. 18 (2011) 455–459.CrossRef Z.J. Wang, W. Ni, K.Q. Li, X.Y. Huang, L.Q. Zhu, Int. J. Miner. Metall. Mater. 18 (2011) 455–459.CrossRef
[3]
go back to reference K.Q. Li, Y.Y. Zhang, P. Zhao, L. Feng, Adv. Mater. Res. 1872 (2014) 1624–1629. K.Q. Li, Y.Y. Zhang, P. Zhao, L. Feng, Adv. Mater. Res. 1872 (2014) 1624–1629.
[4]
go back to reference C.F. Shan, J. Wang, J.F. Zheng, Y. Yu, Bull. Chin. Ceram. Soc. 31 (2012) 1263–1268. C.F. Shan, J. Wang, J.F. Zheng, Y. Yu, Bull. Chin. Ceram. Soc. 31 (2012) 1263–1268.
[5]
go back to reference X.M. Li, Z.Y. Wen, Y. Li, H.B. Yang, X.D. Xing, Trans. Nonferrous Met. Soc. China 29 (2019) 2658–2666.CrossRef X.M. Li, Z.Y. Wen, Y. Li, H.B. Yang, X.D. Xing, Trans. Nonferrous Met. Soc. China 29 (2019) 2658–2666.CrossRef
[6]
go back to reference H.G. Dong, Y.F. Guo, T. Jiang, G.H. Li, Y.B. Yang, Min. Metall. Eng. 28 (2008) 37–39. H.G. Dong, Y.F. Guo, T. Jiang, G.H. Li, Y.B. Yang, Min. Metall. Eng. 28 (2008) 37–39.
[7]
go back to reference Y.G. Guo, R. Zhu, Y. Wang, J. Liu, Ind. Heat. 44 (2015) 40–43. Y.G. Guo, R. Zhu, Y. Wang, J. Liu, Ind. Heat. 44 (2015) 40–43.
[8]
go back to reference S. Wang, W. Ni, K.Q. Li, C.L. Wang, J.Y. Wang. Trans. Mater. Heat Treat. 35 (2014) 23–28. S. Wang, W. Ni, K.Q. Li, C.L. Wang, J.Y. Wang. Trans. Mater. Heat Treat. 35 (2014) 23–28.
[9]
go back to reference F.L. Lu, Y.H. Guo, Y.Y. Zhang, J.J. Gao, Iron Steel Technol. 49 (2014) 19–23.CrossRef F.L. Lu, Y.H. Guo, Y.Y. Zhang, J.J. Gao, Iron Steel Technol. 49 (2014) 19–23.CrossRef
[10]
[11]
[12]
[14]
go back to reference B. Wei, Y.M. Zhang, B.S. Xu. Metal Mine (2017) No. 2, 188–192. B. Wei, Y.M. Zhang, B.S. Xu. Metal Mine (2017) No. 2, 188–192.
[15]
go back to reference S.L. Wu, F. Chang, J.L. Zhang, H. Lu, Iron and Steel 52 (2017) 84–93. S.L. Wu, F. Chang, J.L. Zhang, H. Lu, Iron and Steel 52 (2017) 84–93.
[16]
go back to reference J. Pan, G.L. Zheng, D.Q. Zhu, X.L. Zhou, Trans. Nonferrous Met. Soc. China 23 (2013) 3421–3427.CrossRef J. Pan, G.L. Zheng, D.Q. Zhu, X.L. Zhou, Trans. Nonferrous Met. Soc. China 23 (2013) 3421–3427.CrossRef
[17]
go back to reference J.J. Li, M. Hitch, Int. J. Miner. Metall. Mater. 158 (2015) 18–26. J.J. Li, M. Hitch, Int. J. Miner. Metall. Mater. 158 (2015) 18–26.
[18]
go back to reference X. Li, Z.L. Chen, X.F. Chen, Y. Zhang, Y. Niu, J. Wuhan Univ. Technol. Mater. Sci. Ed. 30 (2015) 974–980. X. Li, Z.L. Chen, X.F. Chen, Y. Zhang, Y. Niu, J. Wuhan Univ. Technol. Mater. Sci. Ed. 30 (2015) 974–980.
[19]
go back to reference P. Pourghahramani, E. Forssberg, Int. J. Miner. Process. 82 (2007) 96–105.CrossRef P. Pourghahramani, E. Forssberg, Int. J. Miner. Process. 82 (2007) 96–105.CrossRef
[20]
go back to reference J. Fernandez, D. Guzman, S. Ordonez, Int. J. Miner. Process. 102 (2012) 124–129. J. Fernandez, D. Guzman, S. Ordonez, Int. J. Miner. Process. 102 (2012) 124–129.
[21]
go back to reference C.K. Bulin, T. Guo, R.C. Zhao, B.W. Zhang, Y. Zhang, Metal Mine 41 (2012) 41–45. C.K. Bulin, T. Guo, R.C. Zhao, B.W. Zhang, Y. Zhang, Metal Mine 41 (2012) 41–45.
[22]
[23]
Metadata
Title
Effect of mechanical activation on enhancement of carbothermal reduction of nickel slag
Authors
Xiao-ming Li
Hai-bo Yang
Jin-bang Ruan
Yi Li
Zhen-yu Wen
Xiang-dong Xing
Publication date
03-06-2020
Publisher
Springer Singapore
Published in
Journal of Iron and Steel Research International / Issue 11/2020
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00422-z

Other articles of this Issue 11/2020

Journal of Iron and Steel Research International 11/2020 Go to the issue

Premium Partners