Skip to main content
Top
Published in: Tribology Letters 4/2018

01-12-2018 | Original Paper

Effect of Mechanochemically Functionalized Multilayer Graphene on the Tribological Properties of Silicon Carbide/Graphene Nanocomposites in Aqueous Environment

Authors: Wenli Zhang, Christian Schröder, Bernadette Schlüter, Martin Knoch, Ján Dusza, Richard Sedlák, Rolf Mülhaupt, Andreas Kailer

Published in: Tribology Letters | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Dry milling of graphite in a ball mill represents a versatile one-step mechanochemical process for fabricating mechanochemically functionalized multilayer graphene (MG) bearing different functional groups. The variation of the milling parameters enables to control particle size, shape, functionality, specific surface area, and dispersability of the MG functional fillers. In this study, MG was used as functional nanofiller for the production of SiC/MG nanocomposites. The nanocomposites exhibit significantly improved tribological behavior. The results of rotating pin on disc sliding tests show that with SiC/MG a noticeable improvement of friction and wear behavior under water-lubricated conditions like in slide bearings and face seals can be achieved. Sliding friction systems with the variant SiC + 2% MG–CO2-120 h appear to have the most promising tribological properties, due to the reduced size of the homogeneously distributed graphite particles, which promote the formation of advantageous surface states.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Roewer, G., Herzog, U., Trommer, K., Müller, E., Frühauf, S.: Silicon Carbide—A Survey of Synthetic Approaches, Properties and Applications. In: High Performance Non-Oxide Ceramics I. Springer, Berlin (2002) Roewer, G., Herzog, U., Trommer, K., Müller, E., Frühauf, S.: Silicon Carbide—A Survey of Synthetic Approaches, Properties and Applications. In: High Performance Non-Oxide Ceramics I. Springer, Berlin (2002)
2.
go back to reference Schwetz, K.A.: Silicon Carbide Based Hard Materials. In: Handbook of Ceramic Hard Materials. Wiley, Weinheim (2008) Schwetz, K.A.: Silicon Carbide Based Hard Materials. In: Handbook of Ceramic Hard Materials. Wiley, Weinheim (2008)
3.
go back to reference Friedrichs, P.: Silicon Carbide. Wiley-VCH, Weinheim (2010) Friedrichs, P.: Silicon Carbide. Wiley-VCH, Weinheim (2010)
4.
go back to reference Porwal, H., Grasso, S., Reece, M.J.: Review of graphene–ceramic matrix composites. Adv. Appl. Ceram. 8, 443–454 (2013)CrossRef Porwal, H., Grasso, S., Reece, M.J.: Review of graphene–ceramic matrix composites. Adv. Appl. Ceram. 8, 443–454 (2013)CrossRef
5.
go back to reference Ciudad, E., Sánchez-González, E., Borrero-López, O., Guiberteau, F., Nygren, M., Ortiz, A.L.: Sliding-wear resistance of ultrafine-grained SiC densified by spark plasma sintering with 3Y2O3 + 5Al2O3 or Y3Al5O12 additives. Scr. Mater. 8, 598–601 (2013)CrossRef Ciudad, E., Sánchez-González, E., Borrero-López, O., Guiberteau, F., Nygren, M., Ortiz, A.L.: Sliding-wear resistance of ultrafine-grained SiC densified by spark plasma sintering with 3Y2O3 + 5Al2O3 or Y3Al5O12 additives. Scr. Mater. 8, 598–601 (2013)CrossRef
6.
go back to reference Borrero-López, O., Ortiz, A.L., Guiberteau, F., Padture, N.P.: Microstructural design of sliding-wear-resistant liquid-phase-sintered SiC: an overview. J. Eur. Ceram. Soc. 11, 3351–3357 (2007)CrossRef Borrero-López, O., Ortiz, A.L., Guiberteau, F., Padture, N.P.: Microstructural design of sliding-wear-resistant liquid-phase-sintered SiC: an overview. J. Eur. Ceram. Soc. 11, 3351–3357 (2007)CrossRef
7.
go back to reference Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 3, 183–191 (2007)CrossRef Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 3, 183–191 (2007)CrossRef
8.
go back to reference Gomez De Arco, L., Zhang, Y., Schlenker, C.W., Ryu, K., Thompson, M.E., Zhou, C.: Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano. 5, 2865–2873 (2010)CrossRef Gomez De Arco, L., Zhang, Y., Schlenker, C.W., Ryu, K., Thompson, M.E., Zhou, C.: Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano. 5, 2865–2873 (2010)CrossRef
9.
go back to reference Wang, X., You, H., Liu, F., Li, M., Wan, L., Li, S., Li, Q., Xu, Y., Tian, R., Yu, Z., Xiang, D., Cheng, J.: Large-scale synthesis of few-layered graphene using CVD. Chem. Vap. Depos. 1–3, 53–56 (2009)CrossRef Wang, X., You, H., Liu, F., Li, M., Wan, L., Li, S., Li, Q., Xu, Y., Tian, R., Yu, Z., Xiang, D., Cheng, J.: Large-scale synthesis of few-layered graphene using CVD. Chem. Vap. Depos. 1–3, 53–56 (2009)CrossRef
10.
go back to reference Tölle, F.J., Fabritius, M., Mülhaupt, R.: Emulsifier-free graphene dispersions with high graphene content for printed electronics and freestanding graphene films. Adv. Funct. Mater. 6, 1136–1144 (2012)CrossRef Tölle, F.J., Fabritius, M., Mülhaupt, R.: Emulsifier-free graphene dispersions with high graphene content for printed electronics and freestanding graphene films. Adv. Funct. Mater. 6, 1136–1144 (2012)CrossRef
11.
go back to reference Aguilar-Bolados, H., Lopez-Manchado, M.A., Brasero, J., Avilés, F., Yazdani-Pedram, M.: Effect of the morphology of thermally reduced graphite oxide on the mechanical and electrical properties of natural rubber nanocomposites. Composites Part B 87, 350–356 (2016)CrossRef Aguilar-Bolados, H., Lopez-Manchado, M.A., Brasero, J., Avilés, F., Yazdani-Pedram, M.: Effect of the morphology of thermally reduced graphite oxide on the mechanical and electrical properties of natural rubber nanocomposites. Composites Part B 87, 350–356 (2016)CrossRef
12.
go back to reference Zhan, D., Ni, Z., Chen, W., Sun, L., Luo, Z., Lai, L., Yu, T., Wee, A.T.S., Shen, Z.: Electronic structure of graphite oxide and thermally reduced graphite oxide. Carbon 4, 1362–1366 (2011)CrossRef Zhan, D., Ni, Z., Chen, W., Sun, L., Luo, Z., Lai, L., Yu, T., Wee, A.T.S., Shen, Z.: Electronic structure of graphite oxide and thermally reduced graphite oxide. Carbon 4, 1362–1366 (2011)CrossRef
13.
go back to reference Mauro, M., Cipolletti, V., Galimberti, M., Longo, P., Guerra, G.: Chemically reduced graphite oxide with improved shape anisotropy. J. Phys. Chem. C 46, 24809–24813 (2012)CrossRef Mauro, M., Cipolletti, V., Galimberti, M., Longo, P., Guerra, G.: Chemically reduced graphite oxide with improved shape anisotropy. J. Phys. Chem. C 46, 24809–24813 (2012)CrossRef
14.
go back to reference Wei, G., Yu, J., Gu, M., Ai, X., Xu, X., Tang, T.B.: Dielectric relaxation characteristics of chemically reduced graphite oxide. Carbon, 95, 374–379 (2015)CrossRef Wei, G., Yu, J., Gu, M., Ai, X., Xu, X., Tang, T.B.: Dielectric relaxation characteristics of chemically reduced graphite oxide. Carbon, 95, 374–379 (2015)CrossRef
15.
go back to reference Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 6, 1339 (1958)CrossRef Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 6, 1339 (1958)CrossRef
16.
go back to reference Jeon, I.-Y., Choi, H.-J., Ju, M.J., Choi, I.T., Lim, K., Ko, J., Kim, H.K., Kim, J.C., Lee, J.-J., Shin, D., Jung, S.-M., Seo, J.-M., Kim, M.-J., Park, N., Dai, L., Baek, J.-B.: Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Sci. Rep. 3, 2260 (2013)CrossRef Jeon, I.-Y., Choi, H.-J., Ju, M.J., Choi, I.T., Lim, K., Ko, J., Kim, H.K., Kim, J.C., Lee, J.-J., Shin, D., Jung, S.-M., Seo, J.-M., Kim, M.-J., Park, N., Dai, L., Baek, J.-B.: Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Sci. Rep. 3, 2260 (2013)CrossRef
17.
go back to reference Jeon, I.-Y., Shin, Y.-R., Sohn, G.-J., Choi, H.-J., Bae, S.-Y., Mahmood, J., Jung, S.-M., Seo, J.-M., Kim, M.-J., Wook Chang, D., Dai, L., Baek, J.-B.: Edge-carboxylated graphene nanosheets via ball milling. PNAS 15, 5588–5593 (2012)CrossRef Jeon, I.-Y., Shin, Y.-R., Sohn, G.-J., Choi, H.-J., Bae, S.-Y., Mahmood, J., Jung, S.-M., Seo, J.-M., Kim, M.-J., Wook Chang, D., Dai, L., Baek, J.-B.: Edge-carboxylated graphene nanosheets via ball milling. PNAS 15, 5588–5593 (2012)CrossRef
18.
go back to reference Jeon, I.-Y., Choi, H.-J., Jung, S.-M., Seo, J.-M., Kim, M.-J., Dai, L., Baek, J.-B.: Large-scale production of edge-Selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 4, 1386–1393 (2013)CrossRef Jeon, I.-Y., Choi, H.-J., Jung, S.-M., Seo, J.-M., Kim, M.-J., Dai, L., Baek, J.-B.: Large-scale production of edge-Selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 4, 1386–1393 (2013)CrossRef
19.
go back to reference Appel, A.-K., Thomann, R., Mülhaupt, R.: Polyurethane nanocomposites prepared from solvent-free stable dispersions of functionalized graphene nanosheets in polyols. Polymer 22, 4931–4939 (2012)CrossRef Appel, A.-K., Thomann, R., Mülhaupt, R.: Polyurethane nanocomposites prepared from solvent-free stable dispersions of functionalized graphene nanosheets in polyols. Polymer 22, 4931–4939 (2012)CrossRef
20.
go back to reference Beckert, F., Bodendorfer, S., Zhang, W., Thomann, R., Mülhaupt, R.: Mechanochemical route to graphene-supported iron catalysts for olefin polymerization and in situ formation of carbon/polyolefin nanocomposites. Macromolecules 20, 7036–7042 (2014)CrossRef Beckert, F., Bodendorfer, S., Zhang, W., Thomann, R., Mülhaupt, R.: Mechanochemical route to graphene-supported iron catalysts for olefin polymerization and in situ formation of carbon/polyolefin nanocomposites. Macromolecules 20, 7036–7042 (2014)CrossRef
21.
go back to reference Steurer, P., Wissert, R., Thomann, R., Mülhaupt, R.: Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol. Rapid Commun. 4–5, 316–327 (2009)CrossRef Steurer, P., Wissert, R., Thomann, R., Mülhaupt, R.: Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol. Rapid Commun. 4–5, 316–327 (2009)CrossRef
22.
go back to reference Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Graphene-based composite materials. Nature 7100, 282–286 (2006)CrossRef Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Graphene-based composite materials. Nature 7100, 282–286 (2006)CrossRef
23.
go back to reference Huang, X., Qi, X., Boey, F., Zhang, H.: Graphene-based composites. Chem. Soc. Rev. 2, 666–686 (2012)CrossRef Huang, X., Qi, X., Boey, F., Zhang, H.: Graphene-based composites. Chem. Soc. Rev. 2, 666–686 (2012)CrossRef
24.
go back to reference Markandan, K., Chin, J.K., Tan, M.T.: Recent progress in graphene based ceramic composites: a review. J. Mater. Res. 1, 84–106 (2017)CrossRef Markandan, K., Chin, J.K., Tan, M.T.: Recent progress in graphene based ceramic composites: a review. J. Mater. Res. 1, 84–106 (2017)CrossRef
25.
go back to reference Nieto, A., Bisht, A., Lahiri, D., Zhang, C., Agarwal, A.: Graphene reinforced metal and ceramic matrix composites: a review. Int. Mater. Rev. 5, 241–302 (2017)CrossRef Nieto, A., Bisht, A., Lahiri, D., Zhang, C., Agarwal, A.: Graphene reinforced metal and ceramic matrix composites: a review. Int. Mater. Rev. 5, 241–302 (2017)CrossRef
26.
go back to reference Miranzo, P., Belmonte, M., Osendi, M., Isabel: From bulk to cellular structures: a review on ceramic/graphene filler composites. J. Eur. Ceram. Soc. 12, 3649–3672 (2017)CrossRef Miranzo, P., Belmonte, M., Osendi, M., Isabel: From bulk to cellular structures: a review on ceramic/graphene filler composites. J. Eur. Ceram. Soc. 12, 3649–3672 (2017)CrossRef
27.
go back to reference Kvetková, L., Duszová, A., Hvizdoš, P., Dusza, J., Kun, P., Balázsi, C.: Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites. Scr. Mater. 10, 793–796 (2012)CrossRef Kvetková, L., Duszová, A., Hvizdoš, P., Dusza, J., Kun, P., Balázsi, C.: Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites. Scr. Mater. 10, 793–796 (2012)CrossRef
28.
go back to reference Román-Manso, B., Domingues, E., Figueiredo, F.M., Belmonte, M., Miranzo, P.: Enhanced electrical conductivity of silicon carbide ceramics by addition of graphene nanoplatelets. J. Eur. Ceram. Soc. 10, 2723 (2015)CrossRef Román-Manso, B., Domingues, E., Figueiredo, F.M., Belmonte, M., Miranzo, P.: Enhanced electrical conductivity of silicon carbide ceramics by addition of graphene nanoplatelets. J. Eur. Ceram. Soc. 10, 2723 (2015)CrossRef
29.
go back to reference Amann, T., Kailer, A., Herrmann, M.: Influence of electrochemical potentials on the tribological behavior of silicon carbide and diamond-coated silicon carbide. J. Bio- Tribo-Corros. 4, 30 (2015)CrossRef Amann, T., Kailer, A., Herrmann, M.: Influence of electrochemical potentials on the tribological behavior of silicon carbide and diamond-coated silicon carbide. J. Bio- Tribo-Corros. 4, 30 (2015)CrossRef
30.
go back to reference Sedlák, R., Kovalčíková, A., Balko, J., Rutkowski, P., Dubiel, A., Zientara, D., Girman, V., Múdra, E., Dusza, J.: Effect of graphene platelets on tribological properties of boron carbide ceramic composites. Int. J. Refract. Met. Hard Mater. 65, 57–63 (2017)CrossRef Sedlák, R., Kovalčíková, A., Balko, J., Rutkowski, P., Dubiel, A., Zientara, D., Girman, V., Múdra, E., Dusza, J.: Effect of graphene platelets on tribological properties of boron carbide ceramic composites. Int. J. Refract. Met. Hard Mater. 65, 57–63 (2017)CrossRef
31.
go back to reference Porwal, H., Tatarko, P., Saggar, R., Grasso, S., Kumar Mani, M., Dlouhý, I., Dusza, J., Reece, M.J.: Tribological properties of silica–graphene nano-platelet composites. Ceram. Int. 8, 12067–12074 (2014)CrossRef Porwal, H., Tatarko, P., Saggar, R., Grasso, S., Kumar Mani, M., Dlouhý, I., Dusza, J., Reece, M.J.: Tribological properties of silica–graphene nano-platelet composites. Ceram. Int. 8, 12067–12074 (2014)CrossRef
32.
go back to reference Miranzo, P., García, E., Ramírez, C., González-Julián, J., Belmonte, M., Osendi, M.I.: Anisotropic thermal conductivity of silicon nitride ceramics containing carbon nanostructures. J. Eur. Ceram. Soc. 8, 1847 (2012)CrossRef Miranzo, P., García, E., Ramírez, C., González-Julián, J., Belmonte, M., Osendi, M.I.: Anisotropic thermal conductivity of silicon nitride ceramics containing carbon nanostructures. J. Eur. Ceram. Soc. 8, 1847 (2012)CrossRef
33.
go back to reference Balázsi, C., Fogarassy, Z., Tapasztó, O., Kailer, A., Schröder, C., Parchoviansky, M., Galusek, D., Dusza, J., Balázsi, K.: Si3N4/graphene nanocomposites for tribological application in aqueous environments prepared by attritor milling and hot pressing. J. Eur. Ceram. Soc. 12, 3797–3804 (2017)CrossRef Balázsi, C., Fogarassy, Z., Tapasztó, O., Kailer, A., Schröder, C., Parchoviansky, M., Galusek, D., Dusza, J., Balázsi, K.: Si3N4/graphene nanocomposites for tribological application in aqueous environments prepared by attritor milling and hot pressing. J. Eur. Ceram. Soc. 12, 3797–3804 (2017)CrossRef
35.
go back to reference Llorente, J., Belmonte, M.: Friction and wear behaviour of silicon carbide/graphene composites under isooctane lubrication. J. Eur. Ceram. Soc. 10, 3441–3446 (2018)CrossRef Llorente, J., Belmonte, M.: Friction and wear behaviour of silicon carbide/graphene composites under isooctane lubrication. J. Eur. Ceram. Soc. 10, 3441–3446 (2018)CrossRef
36.
go back to reference Maros, B., Németh, M., Károly, A.K., Bódis, Z., Maros, E., Tapasztó, Z., Balázsi, K.O.: Tribological characterisation of silicon nitride/multilayer graphene nanocomposites produced by HIP and SPS technology. Tribol. Int. 93, 269–281 (2016)CrossRef Maros, B., Németh, M., Károly, A.K., Bódis, Z., Maros, E., Tapasztó, Z., Balázsi, K.O.: Tribological characterisation of silicon nitride/multilayer graphene nanocomposites produced by HIP and SPS technology. Tribol. Int. 93, 269–281 (2016)CrossRef
37.
go back to reference Hvizdoš, P., Dusza, J., Balázsi, C.: Tribological properties of Si3N4–graphene nanocomposites. J. Eur. Ceram. Soc. 12, 2359–2364 (2013)CrossRef Hvizdoš, P., Dusza, J., Balázsi, C.: Tribological properties of Si3N4–graphene nanocomposites. J. Eur. Ceram. Soc. 12, 2359–2364 (2013)CrossRef
38.
go back to reference Beckert, F., Trenkle, S., Thomann, R., Mülhaupt, R.: Mechanochemical route to functionalized graphene and carbon nanofillers for graphene/SBR nanocomposites. Macromol. Mater. Eng. 12, 1513–1520 (2014)CrossRef Beckert, F., Trenkle, S., Thomann, R., Mülhaupt, R.: Mechanochemical route to functionalized graphene and carbon nanofillers for graphene/SBR nanocomposites. Macromol. Mater. Eng. 12, 1513–1520 (2014)CrossRef
39.
go back to reference Tschoppe, K., Beckert, F., Beckert, M., Mülhaupt, R.: Thermally reduced graphite oxide and mechanochemically functionalized graphene as functional fillers for epoxy nanocomposites. Macromol. Mater. Eng. 2, 140–152 (2015)CrossRef Tschoppe, K., Beckert, F., Beckert, M., Mülhaupt, R.: Thermally reduced graphite oxide and mechanochemically functionalized graphene as functional fillers for epoxy nanocomposites. Macromol. Mater. Eng. 2, 140–152 (2015)CrossRef
40.
go back to reference Pereira, dosS., Tonello, K., Padovano, E., Badini, C., Biamino, S., Pavese, M., Fino, P.: Fabrication and characterization of laminated SiC composites reinforced with graphene nanoplatelets. Mater. Sci. Eng. A 659, 158–164 (2016)CrossRef Pereira, dosS., Tonello, K., Padovano, E., Badini, C., Biamino, S., Pavese, M., Fino, P.: Fabrication and characterization of laminated SiC composites reinforced with graphene nanoplatelets. Mater. Sci. Eng. A 659, 158–164 (2016)CrossRef
41.
go back to reference Munro, R.G.: Material properties of a sintered α-SiC. J. Phys. Chem. Ref. Data 5, 1195–1203 (1997)CrossRef Munro, R.G.: Material properties of a sintered α-SiC. J. Phys. Chem. Ref. Data 5, 1195–1203 (1997)CrossRef
Metadata
Title
Effect of Mechanochemically Functionalized Multilayer Graphene on the Tribological Properties of Silicon Carbide/Graphene Nanocomposites in Aqueous Environment
Authors
Wenli Zhang
Christian Schröder
Bernadette Schlüter
Martin Knoch
Ján Dusza
Richard Sedlák
Rolf Mülhaupt
Andreas Kailer
Publication date
01-12-2018
Publisher
Springer US
Published in
Tribology Letters / Issue 4/2018
Print ISSN: 1023-8883
Electronic ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-018-1074-2

Other articles of this Issue 4/2018

Tribology Letters 4/2018 Go to the issue

Premium Partners