Skip to main content
Top
Published in: Computational Mechanics 1-2/2018

22-08-2017 | Original Paper

Effect of microstructure on the elasto-viscoplastic deformation of dual phase titanium structures

Authors: Tugce Ozturk, Anthony D. Rollett

Published in: Computational Mechanics | Issue 1-2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present study is devoted to the creation of a process–structure–property database for dual phase titanium alloys, through a synthetic microstructure generation method and a mesh-free fast Fourier transform based micromechanical model that operates on a discretized image of the microstructure. A sensitivity analysis is performed as a precursor to determine the statistically representative volume element size for creating 3D synthetic microstructures based on additively manufactured Ti–6Al–4V characteristics, which are further modified to expand the database for features of interest, e.g., lath thickness. Sets of titanium hardening parameters are extracted from literature, and The relative effect of the chosen microstructural features is quantified through comparisons of average and local field distributions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–28CrossRef Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–28CrossRef
3.
go back to reference Lutjering G (1998) Influence of processing on microstructure and mechanical properties of \(\alpha + \beta \) titanium alloys. Mater Sci Eng A 243(1–2):32–45CrossRef Lutjering G (1998) Influence of processing on microstructure and mechanical properties of \(\alpha + \beta \) titanium alloys. Mater Sci Eng A 243(1–2):32–45CrossRef
4.
go back to reference Semiatin SL, Seetharaman V, Weiss I (1996) The thermomechanical processing of alpha/beta titanium alloys. J Mater 49(6):33–39 Semiatin SL, Seetharaman V, Weiss I (1996) The thermomechanical processing of alpha/beta titanium alloys. J Mater 49(6):33–39
5.
go back to reference Kobryn PA, Semiatin SL (2003) Microstructure and texture evolution during solidification processing of Ti–6Al–4V. J Mater Process Technol 135:330–339CrossRef Kobryn PA, Semiatin SL (2003) Microstructure and texture evolution during solidification processing of Ti–6Al–4V. J Mater Process Technol 135:330–339CrossRef
6.
go back to reference RMI Titanium Company (2000) Titanium alloy guide. RMI Titanium Company an RTI International Metals, Inc. Company, pp 1–45 RMI Titanium Company (2000) Titanium alloy guide. RMI Titanium Company an RTI International Metals, Inc. Company, pp 1–45
7.
go back to reference Zhai Y, Galarraga H, Lados DA (2015) Microstructure evolution, tensile properties, and fatigue damage mechanisms in Ti–6Al–4V alloys fabricated by two additive manufacturing techniques. Procedia Eng 114:658–666CrossRef Zhai Y, Galarraga H, Lados DA (2015) Microstructure evolution, tensile properties, and fatigue damage mechanisms in Ti–6Al–4V alloys fabricated by two additive manufacturing techniques. Procedia Eng 114:658–666CrossRef
8.
go back to reference Murr LE, Esquivel EV et al (2009) Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V. Mater Charact 60:96–105CrossRef Murr LE, Esquivel EV et al (2009) Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V. Mater Charact 60:96–105CrossRef
9.
go back to reference Swarnakar AK, Van der Biest O, Baufeld B (2010) Thermal expansion and lattice parameters of shaped metal deposited Ti–6Al–4V. J Alloys Compd 509(6):2723–28CrossRef Swarnakar AK, Van der Biest O, Baufeld B (2010) Thermal expansion and lattice parameters of shaped metal deposited Ti–6Al–4V. J Alloys Compd 509(6):2723–28CrossRef
10.
go back to reference Gockel J, Beuth J (2013) Understanding Ti–6Al–4V microstructure control in additive manufacturing via process maps. In: Solid freeform fabrication proceedings, pp 666–674 Gockel J, Beuth J (2013) Understanding Ti–6Al–4V microstructure control in additive manufacturing via process maps. In: Solid freeform fabrication proceedings, pp 666–674
11.
go back to reference Bontha S, Klingbeil NW, Kobryn PA, Fraser HL (2009) Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures. Mater Sci Eng A 513–514:311–318CrossRef Bontha S, Klingbeil NW, Kobryn PA, Fraser HL (2009) Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures. Mater Sci Eng A 513–514:311–318CrossRef
12.
go back to reference Beese AM et al (2015) Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater 87:309–320CrossRef Beese AM et al (2015) Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater 87:309–320CrossRef
13.
go back to reference Kanit T, Forest S, Galliet I, Mounoury D, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13–14):3647–3679CrossRefMATH Kanit T, Forest S, Galliet I, Mounoury D, Jeulin D (2003) Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int J Solids Struct 40(13–14):3647–3679CrossRefMATH
14.
go back to reference Fan ZG, Wu Y, Zhao X, Lu Y (2004) Simulation of polycrystalline structure with Voronoi diagram in Laguerre geometry based on random closed packing of spheres. Comput Mater Sci 29(3):301–308CrossRef Fan ZG, Wu Y, Zhao X, Lu Y (2004) Simulation of polycrystalline structure with Voronoi diagram in Laguerre geometry based on random closed packing of spheres. Comput Mater Sci 29(3):301–308CrossRef
15.
go back to reference Groeber MA, Ghosh S, Uchic MD, Dimiduk DM (2007) Developing a robust 3-D characterization–representation framework for modeling polycrystalline materials. J Mater 59(9):32–36 Groeber MA, Ghosh S, Uchic MD, Dimiduk DM (2007) Developing a robust 3-D characterization–representation framework for modeling polycrystalline materials. J Mater 59(9):32–36
16.
go back to reference Groeber MA, Ghosh S, Uchic MD, Dimiduk DM (2008) A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 2: Synthetic structure generation. Acta Mater 56(6):1274–1287CrossRef Groeber MA, Ghosh S, Uchic MD, Dimiduk DM (2008) A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 2: Synthetic structure generation. Acta Mater 56(6):1274–1287CrossRef
17.
go back to reference Saylor DM, Fridy J, El-Dasher BS, Jung KY, Rollett AD (2004) Statistically representative three-dimensional microstructures based on orthogonal observation sections. Metall Mater Trans A 35A(7):1969–1979CrossRef Saylor DM, Fridy J, El-Dasher BS, Jung KY, Rollett AD (2004) Statistically representative three-dimensional microstructures based on orthogonal observation sections. Metall Mater Trans A 35A(7):1969–1979CrossRef
18.
go back to reference Venkataramani G, Kirane K, Ghosh S (2008) Microstructural parameters affecting creep induced load shedding in Ti-6242 by a size dependent crystal plasticity FE model. Int J Plast 24:428–454CrossRefMATH Venkataramani G, Kirane K, Ghosh S (2008) Microstructural parameters affecting creep induced load shedding in Ti-6242 by a size dependent crystal plasticity FE model. Int J Plast 24:428–454CrossRefMATH
19.
go back to reference Thomas J, Groeber M, Ghosh S (2012) Image-based crystal plasticity FE framework for microstructure dependent properties of Ti–6Al–4V alloys. Mater Sci Eng A 553:164–175CrossRef Thomas J, Groeber M, Ghosh S (2012) Image-based crystal plasticity FE framework for microstructure dependent properties of Ti–6Al–4V alloys. Mater Sci Eng A 553:164–175CrossRef
20.
go back to reference Zhang M, Zhang J, McDowell DL (2007) Microstructure-based crystal plasticity modeling of cyclic deformation of Ti–6Al–4V. Int J Plast 23:1328–1348CrossRefMATH Zhang M, Zhang J, McDowell DL (2007) Microstructure-based crystal plasticity modeling of cyclic deformation of Ti–6Al–4V. Int J Plast 23:1328–1348CrossRefMATH
21.
go back to reference Przybyla CP, McDowell DL (2010) Simulation-based extreme value marked correlations in fatigue of advanced engineering alloys. Procedia Eng 2:1045–1056CrossRef Przybyla CP, McDowell DL (2010) Simulation-based extreme value marked correlations in fatigue of advanced engineering alloys. Procedia Eng 2:1045–1056CrossRef
22.
go back to reference Simonelli M, Tse YY, Tuck C (2012) Further understanding of Ti–6Al–4V selective laser melting using texture analysis. In: Solid freeform fabrication proceedings, pp 480–491 Simonelli M, Tse YY, Tuck C (2012) Further understanding of Ti–6Al–4V selective laser melting using texture analysis. In: Solid freeform fabrication proceedings, pp 480–491
23.
go back to reference Gong X, Lydon J, Cooper K, Chou K (2014) Beam speed effects on Ti–6Al–4V microstructures in electron beam additive manufacturing. J Mater Res 29(17):1951–1959CrossRef Gong X, Lydon J, Cooper K, Chou K (2014) Beam speed effects on Ti–6Al–4V microstructures in electron beam additive manufacturing. J Mater Res 29(17):1951–1959CrossRef
24.
go back to reference Gong H, Gu H, Zeng K, Dilip JJS et al (2014) Melt pool characterization for selective laser melting of Ti–6Al–4V pre-alloyed powder. In: Solid freeform fabrication proceedings, pp 256–267 Gong H, Gu H, Zeng K, Dilip JJS et al (2014) Melt pool characterization for selective laser melting of Ti–6Al–4V pre-alloyed powder. In: Solid freeform fabrication proceedings, pp 256–267
25.
go back to reference Nassar AR, Reutzel EW (2015) Additive manufacturing of Ti–6Al–4V using a pulsed laser beam. Metall Mater Trans A 46(6):2781–2789CrossRef Nassar AR, Reutzel EW (2015) Additive manufacturing of Ti–6Al–4V using a pulsed laser beam. Metall Mater Trans A 46(6):2781–2789CrossRef
26.
go back to reference Al-Bermani SS, Blackmore ML, Zhang W, Todd I (2010) The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti–6Al–4V. Metall Mater Trans A 41(13):3422–3434CrossRef Al-Bermani SS, Blackmore ML, Zhang W, Todd I (2010) The origin of microstructural diversity, texture, and mechanical properties in electron beam melted Ti–6Al–4V. Metall Mater Trans A 41(13):3422–3434CrossRef
27.
go back to reference Antonysamy AA, Meyer J, Prangnell PB (2013) Effect of build geometry on the \(\beta \)-grain structure and texture in additive manufacture of Ti–6Al–4V by selective electron beam melting. Mater Charact 84:153–168CrossRef Antonysamy AA, Meyer J, Prangnell PB (2013) Effect of build geometry on the \(\beta \)-grain structure and texture in additive manufacture of Ti–6Al–4V by selective electron beam melting. Mater Charact 84:153–168CrossRef
28.
go back to reference Elmer JW, Palmer TA, Babu SS, Zhang W, DebRoy T (2004) Phase transformation dynamics during welding of Ti–6Al–4V. J Appl Phys 95(12):8327–8339CrossRef Elmer JW, Palmer TA, Babu SS, Zhang W, DebRoy T (2004) Phase transformation dynamics during welding of Ti–6Al–4V. J Appl Phys 95(12):8327–8339CrossRef
29.
go back to reference Groeber MA, Jackson M (2014) DREAM.3D: a digital representation environment for the analysis of microstructure in 3D. Integr Mater Manuf Innov 3:5CrossRef Groeber MA, Jackson M (2014) DREAM.3D: a digital representation environment for the analysis of microstructure in 3D. Integr Mater Manuf Innov 3:5CrossRef
30.
31.
go back to reference Taylor GI (1938) Plastic strain in metals. J Inst Met 62:307–324 Taylor GI (1938) Plastic strain in metals. J Inst Met 62:307–324
32.
go back to reference Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc R Soc Lond Ser A Math Phys Eng Sci A241:376–396MathSciNetCrossRefMATH Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc R Soc Lond Ser A Math Phys Eng Sci A241:376–396MathSciNetCrossRefMATH
33.
go back to reference Molinari A, Canova GR, Ahzi S (1987) A self consistent approach of the large deformation polycrystal viscoplasticity. Acta Metall 35:2983–94CrossRef Molinari A, Canova GR, Ahzi S (1987) A self consistent approach of the large deformation polycrystal viscoplasticity. Acta Metall 35:2983–94CrossRef
34.
go back to reference Lebensohn RA, Turner PA, Signorelli JW, Canova GR, Tomé SN (1998) Calculation of intergranular stresses based on a large-strain viscoplastic self-consistent polycrystal model. Model Simul Mater Sci Eng 6(4):447–65CrossRef Lebensohn RA, Turner PA, Signorelli JW, Canova GR, Tomé SN (1998) Calculation of intergranular stresses based on a large-strain viscoplastic self-consistent polycrystal model. Model Simul Mater Sci Eng 6(4):447–65CrossRef
35.
go back to reference Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69–94MathSciNetCrossRefMATH Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69–94MathSciNetCrossRefMATH
36.
go back to reference Prakash A, Lebensohn RA (2009) Simulation of micromechanical behavior of polycrystals: finite elements versus fast Fourier transforms. Modell Simul Mater Sci Eng 17:064010CrossRef Prakash A, Lebensohn RA (2009) Simulation of micromechanical behavior of polycrystals: finite elements versus fast Fourier transforms. Modell Simul Mater Sci Eng 17:064010CrossRef
37.
go back to reference Lebensohn RA, Liu Y, Castañeda PP (2004) On the accuracy of the self-consistent approximation for polycrystals: comparison with full-field numerical simulations. Acta Mater 52:5347–61CrossRef Lebensohn RA, Liu Y, Castañeda PP (2004) On the accuracy of the self-consistent approximation for polycrystals: comparison with full-field numerical simulations. Acta Mater 52:5347–61CrossRef
38.
go back to reference Lebensohn RA (2001) N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform. Acta Mater 49:2723–37 Lebensohn RA (2001) N-site modeling of a 3D viscoplastic polycrystal using Fast Fourier Transform. Acta Mater 49:2723–37
39.
go back to reference Lebensohn RA, Kanjarla AK, Eisenlohr P (2012) An elasto-viscoplastic formulation based on fast fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int J Plast 32:59–69CrossRef Lebensohn RA, Kanjarla AK, Eisenlohr P (2012) An elasto-viscoplastic formulation based on fast fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int J Plast 32:59–69CrossRef
40.
go back to reference Mura T (1988) Micromechanics of defects in solids. Martinus-Nijhoff, Dodrecht Mura T (1988) Micromechanics of defects in solids. Martinus-Nijhoff, Dodrecht
41.
go back to reference Lebensohn RA, Tome CN, Ponte CastaNeda P (2007) Self-consistent modelling of the mechanical behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations. Philos Mag 87(28):4287–4322 Lebensohn RA, Tome CN, Ponte CastaNeda P (2007) Self-consistent modelling of the mechanical behaviour of viscoplastic polycrystals incorporating intragranular field fluctuations. Philos Mag 87(28):4287–4322
42.
go back to reference Voce E (1955) A practical strain hardening function. Metallurgia 51:219–226 Voce E (1955) A practical strain hardening function. Metallurgia 51:219–226
43.
go back to reference Gockel BT (2016) Constitutive response of a near-alpha titanium alloy as a function of temperature and strain rate. The Ohio State University. Electronic Thesis or Dissertation, Carnegie Mellon University Gockel BT (2016) Constitutive response of a near-alpha titanium alloy as a function of temperature and strain rate. The Ohio State University. Electronic Thesis or Dissertation, Carnegie Mellon University
44.
go back to reference Mandal S, Gockel BT, Balachandran S, Banerjee D, Rollett AD (2017) Simulation of plastic deformation in Ti-5553 alloy using a self-consistent viscoplastic model. Int J Plast 94:57–73 Mandal S, Gockel BT, Balachandran S, Banerjee D, Rollett AD (2017) Simulation of plastic deformation in Ti-5553 alloy using a self-consistent viscoplastic model. Int J Plast 94:57–73
45.
go back to reference Bieler TR, Semiatin SL (2002) The origins of heterogeneous deformation during primary hot working of Ti–6Al–4V. Int J Plast 18(9):1165–1189CrossRefMATH Bieler TR, Semiatin SL (2002) The origins of heterogeneous deformation during primary hot working of Ti–6Al–4V. Int J Plast 18(9):1165–1189CrossRefMATH
46.
go back to reference Facchini L, Magalini M, Robotti P, Molinari A (2009) Microstructure and mechanical properties of Ti–6Al–4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyp J 15(3):171–178CrossRef Facchini L, Magalini M, Robotti P, Molinari A (2009) Microstructure and mechanical properties of Ti–6Al–4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyp J 15(3):171–178CrossRef
47.
go back to reference Stapleton AM et al (2008) Evolution of lattice strain in Ti–6Al–4V during tensile loading at room temperature. Acta Mater 56:6186–6196CrossRef Stapleton AM et al (2008) Evolution of lattice strain in Ti–6Al–4V during tensile loading at room temperature. Acta Mater 56:6186–6196CrossRef
48.
go back to reference Ozturk T et al (2016) Simulation domain size requirements for elastic response of 3D polycrystalline materials. Model Simul Mater Sci Eng 24:015006CrossRef Ozturk T et al (2016) Simulation domain size requirements for elastic response of 3D polycrystalline materials. Model Simul Mater Sci Eng 24:015006CrossRef
49.
go back to reference Werner E, Wesenjak R, Fillafer A, Meier F, Krempaszky C (2016) Microstructure-based modelling of multiphase materials and complex structures. Contin Mech Thermodyn 28:1325–1346MathSciNetCrossRefMATH Werner E, Wesenjak R, Fillafer A, Meier F, Krempaszky C (2016) Microstructure-based modelling of multiphase materials and complex structures. Contin Mech Thermodyn 28:1325–1346MathSciNetCrossRefMATH
50.
go back to reference Boyle KP, Curtin WA (2005) Grain interactions in crystal plasticity. NUMISHEET2005 778:433–438 Boyle KP, Curtin WA (2005) Grain interactions in crystal plasticity. NUMISHEET2005 778:433–438
51.
go back to reference Barton NR, Dawson PR (2001) On the spatial arrangement of lattice orientations in hot-rolled multiphase titanium. Model Simul Mater Sci Eng 9:433–463CrossRef Barton NR, Dawson PR (2001) On the spatial arrangement of lattice orientations in hot-rolled multiphase titanium. Model Simul Mater Sci Eng 9:433–463CrossRef
Metadata
Title
Effect of microstructure on the elasto-viscoplastic deformation of dual phase titanium structures
Authors
Tugce Ozturk
Anthony D. Rollett
Publication date
22-08-2017
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 1-2/2018
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-017-1467-3

Other articles of this Issue 1-2/2018

Computational Mechanics 1-2/2018 Go to the issue

EditorialNotes

Foreword