Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 11/2019

25-04-2019

Effect of nano-fillers on nonlinear conduction and DC breakdown characteristics of epoxy composites

Authors: Xinyu Wang, Qingguo Chen, Qingguo Chi, Tiandong Zhang, Lin Lin

Published in: Journal of Materials Science: Materials in Electronics | Issue 11/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to improve the nonlinear conduction ang dc breakdown strength, the influences of nano-fillers on epoxy nano-composites are studied. The epoxy nano-composites are prepared by regulating the shape factor of the semiconductor filling phase, with separate doping or two phase co-doping. The crystal structure and morphology of the composites and nano-fillers are analyzed by X ray diffraction and scanning electron microscopy. The conductivity and dc breakdown strength of the nano-composites are measured. The results show that the surface treated nano-fillers are well dispersed in the epoxy matrix. Compared with pure epoxy and epoxy nano-composites with lower filler loading of ZnO particles, the ones with higher filler loading of ZnO particles and lower filler loading of ZnO sheets exhibit a distinct nonlinear conduction character, but their breakdown strength is significantly reduced. By contrast, the breakdown strength of BN/epoxy nano-composites with low filler loading is significantly increased, and the 3 wt% BN/epoxy nano-composite behaves the highest breakdown strength. Based on 3 wt% BN nano-sheet, ZnO–BN epoxy nano-composites are prepared by two phase co-doping. Compared with single doping, the two phase co-doping nano-composites can not only improve the nonlinear conductivity, but also alleviate the problem of the serious deterioration of dc breakdown performance. The nonlinear conduction and dc breakdown properties of the studied nano-composites are related to the interaction zone of nano-filler in polymer matrix.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Tanaka, Y. Ohki, M. Ochi, Enhanced partial discharge resistance of epoxy/clay nanocomposite prepared by newly developed organic modification and solubilization methods. IEEE Trans. Dielectr. Electr. Insul. 15, 81–89 (2008)CrossRef T. Tanaka, Y. Ohki, M. Ochi, Enhanced partial discharge resistance of epoxy/clay nanocomposite prepared by newly developed organic modification and solubilization methods. IEEE Trans. Dielectr. Electr. Insul. 15, 81–89 (2008)CrossRef
2.
go back to reference H. Hama, T. Hikosaka, S. Okabe, H. Okubo, Cross-equipment study on charging phenomena of solid insulators in high voltage equipment. IEEE Trans. Dielectr. Electr. Insul. 14, 508–519 (2007)CrossRef H. Hama, T. Hikosaka, S. Okabe, H. Okubo, Cross-equipment study on charging phenomena of solid insulators in high voltage equipment. IEEE Trans. Dielectr. Electr. Insul. 14, 508–519 (2007)CrossRef
3.
go back to reference S.Y. Zhang, H.L. Zhang, H. Feng, J.Q. Yan, P. Liu, Z.R. Peng, Relaxation processes and conduction mechanism of epoxy resin filled with graphene oxide. IEEE Trans. Dielectr. Electr. Insul. 24, 519–527 (2017)CrossRef S.Y. Zhang, H.L. Zhang, H. Feng, J.Q. Yan, P. Liu, Z.R. Peng, Relaxation processes and conduction mechanism of epoxy resin filled with graphene oxide. IEEE Trans. Dielectr. Electr. Insul. 24, 519–527 (2017)CrossRef
4.
go back to reference V.A. Zakrevskii, N.T. Sudar, A. Zaopo, Y.A. Dubitsky, Mechanism of electrical degradation and breakdown of insulating polymers. J. Appl. Phys. 93, 2135–2140 (2003)CrossRef V.A. Zakrevskii, N.T. Sudar, A. Zaopo, Y.A. Dubitsky, Mechanism of electrical degradation and breakdown of insulating polymers. J. Appl. Phys. 93, 2135–2140 (2003)CrossRef
5.
go back to reference D.-E.A. Mansour, H. Kojima, N. Hayakawa, F. Endo, H. Okubo, Surface charge accumulation and partial discharge activity for small gaps of electrode/epoxy interface. IEEE Trans. Dielectr. Electr. Insul. 16, 1150–1157 (2009)CrossRef D.-E.A. Mansour, H. Kojima, N. Hayakawa, F. Endo, H. Okubo, Surface charge accumulation and partial discharge activity for small gaps of electrode/epoxy interface. IEEE Trans. Dielectr. Electr. Insul. 16, 1150–1157 (2009)CrossRef
6.
go back to reference Z.L. Li, B.X. Du, Z.R. Yang, J. Li, Effects of crystal morphology on space charge transportation and dissipation of SiC/silicone rubber composites. IEEE Trans. Dielectr. Electr. Insul. 24, 2616–2625 (2017)CrossRef Z.L. Li, B.X. Du, Z.R. Yang, J. Li, Effects of crystal morphology on space charge transportation and dissipation of SiC/silicone rubber composites. IEEE Trans. Dielectr. Electr. Insul. 24, 2616–2625 (2017)CrossRef
7.
go back to reference J. Li, B.X. Du, X.X. Kong, Z.L. Li, Nonlinear conductivity and interface charge behaviors between LDPE and EPDM/SiC composite for HVDC cable accessory. IEEE Trans. Dielectr. Electr. Insul. 24, 1566–1573 (2017)CrossRef J. Li, B.X. Du, X.X. Kong, Z.L. Li, Nonlinear conductivity and interface charge behaviors between LDPE and EPDM/SiC composite for HVDC cable accessory. IEEE Trans. Dielectr. Electr. Insul. 24, 1566–1573 (2017)CrossRef
8.
go back to reference B. Redondo-Foj, P. Ortiz-Serna, M. Carsí, M.J. Sanchisa, M. Culebras, C.M. Gómez, A. Cantarero, Electrical conductivity properties of expanded graphite-polycarbonatediol polyurethane composites. Polym. Int. 64, 284–292 (2015)CrossRef B. Redondo-Foj, P. Ortiz-Serna, M. Carsí, M.J. Sanchisa, M. Culebras, C.M. Gómez, A. Cantarero, Electrical conductivity properties of expanded graphite-polycarbonatediol polyurethane composites. Polym. Int. 64, 284–292 (2015)CrossRef
9.
go back to reference F.F. Wang, P.H. Zhang, M.Z. Gao, X. Zhao, J.P. Gao, Research on the non-linear conductivity characteristics of nano-SiC silicone rubber composites, in IEEE Conf. Electrical Insulation Dielectric Phenomena-CEIDP, Shenzheng, China, 20–23 October, 535–538 2013 F.F. Wang, P.H. Zhang, M.Z. Gao, X. Zhao, J.P. Gao, Research on the non-linear conductivity characteristics of nano-SiC silicone rubber composites, in IEEE Conf. Electrical Insulation Dielectric Phenomena-CEIDP, Shenzheng, China, 20–23 October, 535–538 2013
10.
go back to reference K. Tavernier, B.R. Varlow, D.W. Auckland, M. Ugur, Improvement in electrical insulators by nonlinear fillers. IEE Proc.: Sci. Meas. Technol. 146, 88–94 (1999) K. Tavernier, B.R. Varlow, D.W. Auckland, M. Ugur, Improvement in electrical insulators by nonlinear fillers. IEE Proc.: Sci. Meas. Technol. 146, 88–94 (1999)
11.
go back to reference K.P. Donnelly, B.R. Varlow, Non-linear DC and AC conductivity in electrically insulating composites. IEEE Trans. Dielectr. Electr. Insul. 10, 610–614 (2003)CrossRef K.P. Donnelly, B.R. Varlow, Non-linear DC and AC conductivity in electrically insulating composites. IEEE Trans. Dielectr. Electr. Insul. 10, 610–614 (2003)CrossRef
12.
go back to reference X. Wang, J.K. Nelson, L.S. Schadler, H. Hillborg, Mechanisms leading to nonlinear electrical response of a nano p-SiC/silicone rubber composite. IEEE Trans. Dielectr. Electr. Insul. 17, 1687–1696 (2010)CrossRef X. Wang, J.K. Nelson, L.S. Schadler, H. Hillborg, Mechanisms leading to nonlinear electrical response of a nano p-SiC/silicone rubber composite. IEEE Trans. Dielectr. Electr. Insul. 17, 1687–1696 (2010)CrossRef
13.
go back to reference B.X. Du, Z.L. Li, Z.R. Yang, Field-dependent conductivity and space charge behavior of silicone rubber/SiC composites. IEEE Trans. Dielectr. Electr. Insul. 23, 3108–3116 (2016)CrossRef B.X. Du, Z.L. Li, Z.R. Yang, Field-dependent conductivity and space charge behavior of silicone rubber/SiC composites. IEEE Trans. Dielectr. Electr. Insul. 23, 3108–3116 (2016)CrossRef
14.
go back to reference Z.H. Yang, P.H. Hu, S.J. Wang, J.W. Zhai, Z.C. Guo, Z.M. Dang, Effect of nano-fillers distribution on the nonlinear conductivity and space charge behavior in SiC/PDMS composites. IEEE Trans. Dielectr. Electr. Insul. 24, 1735–1742 (2017)CrossRef Z.H. Yang, P.H. Hu, S.J. Wang, J.W. Zhai, Z.C. Guo, Z.M. Dang, Effect of nano-fillers distribution on the nonlinear conductivity and space charge behavior in SiC/PDMS composites. IEEE Trans. Dielectr. Electr. Insul. 24, 1735–1742 (2017)CrossRef
15.
go back to reference S.M. Lebedev, O.S. Gefle, A.E. Strizhkov, Novel polymeric composites with nonlinear current-voltage characteristic. IEEE Trans. Dielectr. Electr. Insul. 20, 289–295 (2013)CrossRef S.M. Lebedev, O.S. Gefle, A.E. Strizhkov, Novel polymeric composites with nonlinear current-voltage characteristic. IEEE Trans. Dielectr. Electr. Insul. 20, 289–295 (2013)CrossRef
16.
go back to reference X.Y. Wang, Q.G. Chen, H.D. Yang, K. Zhou, X. Ning, Electrical properties of epoxy/ZnO nano-composite. J. Mater. Sci.: Mater. Electron. 29, 12765–12770 (2018) X.Y. Wang, Q.G. Chen, H.D. Yang, K. Zhou, X. Ning, Electrical properties of epoxy/ZnO nano-composite. J. Mater. Sci.: Mater. Electron. 29, 12765–12770 (2018)
17.
go back to reference H. Miyagawa, L.T. Drzal, J.A. Carsello, Intercalation and exfoliation of clay nanoplatelets in epoxy-based nanocomposites: TEM and XRD observations. Polym. Eng. Sci. 46, 452–463 (2010)CrossRef H. Miyagawa, L.T. Drzal, J.A. Carsello, Intercalation and exfoliation of clay nanoplatelets in epoxy-based nanocomposites: TEM and XRD observations. Polym. Eng. Sci. 46, 452–463 (2010)CrossRef
18.
go back to reference T. Christen, L. Donzel, F. Greuter, Nonlinear resistive electric field grading part 1: theory and simulation. IEEE Electr. Insul. Mag. 26, 47–59 (2011)CrossRef T. Christen, L. Donzel, F. Greuter, Nonlinear resistive electric field grading part 1: theory and simulation. IEEE Electr. Insul. Mag. 26, 47–59 (2011)CrossRef
19.
go back to reference S.T. Li, G.L. Yin, S. Bai, J.Y. Li, A new potential barrier model in epoxy resin nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 18, 1535–1543 (2011)CrossRef S.T. Li, G.L. Yin, S. Bai, J.Y. Li, A new potential barrier model in epoxy resin nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 18, 1535–1543 (2011)CrossRef
20.
go back to reference B.X. Du, B. Cui, M. Xiao, Thermal conductivity and arcing resistance of micro or hybrid BN filled polyethylene under pulse strength. IEEE Trans. Dielectr. Electr. Insul. 23, 3061–3070 (2016)CrossRef B.X. Du, B. Cui, M. Xiao, Thermal conductivity and arcing resistance of micro or hybrid BN filled polyethylene under pulse strength. IEEE Trans. Dielectr. Electr. Insul. 23, 3061–3070 (2016)CrossRef
21.
go back to reference Z.B. Wang, T. Iizuka, M. Kozako, Y. Ohki, T. Tanaka, Development of epoxy/BN composites with high thermal conductivity and sufficient dielectric breakdown strength part I-sample preparations and thermal conductivity. IEEE Trans. Dielectr. Electr. Insul. 18, 1963–1971 (2011)CrossRef Z.B. Wang, T. Iizuka, M. Kozako, Y. Ohki, T. Tanaka, Development of epoxy/BN composites with high thermal conductivity and sufficient dielectric breakdown strength part I-sample preparations and thermal conductivity. IEEE Trans. Dielectr. Electr. Insul. 18, 1963–1971 (2011)CrossRef
22.
go back to reference S.T. Li, G.L. Yin, G. Chen, J.Y. Li, S.N. Bai, L.S. Zhong, Y.X. Zhang, Q.Q. Lei, Short-term breakdown and long-term failure in nanodielectrics: a review. IEEE Trans. Dielectr. Electr. Insul. 17, 1523–1535 (2010)CrossRef S.T. Li, G.L. Yin, G. Chen, J.Y. Li, S.N. Bai, L.S. Zhong, Y.X. Zhang, Q.Q. Lei, Short-term breakdown and long-term failure in nanodielectrics: a review. IEEE Trans. Dielectr. Electr. Insul. 17, 1523–1535 (2010)CrossRef
Metadata
Title
Effect of nano-fillers on nonlinear conduction and DC breakdown characteristics of epoxy composites
Authors
Xinyu Wang
Qingguo Chen
Qingguo Chi
Tiandong Zhang
Lin Lin
Publication date
25-04-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 11/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01367-0

Other articles of this Issue 11/2019

Journal of Materials Science: Materials in Electronics 11/2019 Go to the issue