Skip to main content
Top
Published in: Journal of Polymer Research 2/2019

01-02-2019 | ORIGINAL PAPER

Effect of PPR on the pore formation behavior and pore performances of β-iPP microporous membrane used for Lithium-ion battery separator

Authors: Guan Xu, Lei Ding, Tong Wu, Ming Xiang, Feng Yang

Published in: Journal of Polymer Research | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this article, six different PPR content samples were prepared to study the effect of PPR on the pore formation behavior and pore performances of β nucleated isotactic polypropylene microporous membranes used for lithium-ion battery separator. Different scanning calorimetry (DSC) and the wide angle X-ray diffraction (WXRD) results indicate that the PPR slightly inhibits the formation of β-crystal and significantly reduces the melting point of the sample. Furthermore, the morphological evolution of samples with different PPR contents during biaxial stretching is characterized by tensile testing and SEM. As the PPR content increases, the mechanical performance of the sample increases, but the deformation uniformity of the sample decreases. Especially, the deformation of samples with high PPR content is more inhomogeneous and denser regions are generated during the stretching process, which not only broadens the pore size distribution of the sample but also reduces the connectivity between the micropores. Interestingly, samples with low PPR content (less than 30%) and high PPR content (higher than 30%) have different effects on sample porosity and pore connectivity at elevated temperatures. In other words, the microporous membranes of different PPR components have completely different pore shutdown mechanisms at high temperatures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhu X, Jiang X, Ai X, Yang H, Cao Y (2016) TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries. J Membr Sci 504:97–103CrossRef Zhu X, Jiang X, Ai X, Yang H, Cao Y (2016) TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries. J Membr Sci 504:97–103CrossRef
2.
go back to reference Zhang H, Zhang Y, Yao Z, John AE, Li Y, Li W, Zhu B (2016) Novel configuration of polyimide matrix-enhanced cross-linked gel separator for high performance lithium ion batteries. Electrochim Acta 204:176–182CrossRef Zhang H, Zhang Y, Yao Z, John AE, Li Y, Li W, Zhu B (2016) Novel configuration of polyimide matrix-enhanced cross-linked gel separator for high performance lithium ion batteries. Electrochim Acta 204:176–182CrossRef
3.
go back to reference Guo Y-G, Hu J-S, Wan L-J (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20(15):2878–2887CrossRef Guo Y-G, Hu J-S, Wan L-J (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20(15):2878–2887CrossRef
4.
go back to reference Miao Y-E, Zhu G-N, Hou H, Xia Y-Y, Liu T (2013) Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J Power Sources 226:82–86CrossRef Miao Y-E, Zhu G-N, Hou H, Xia Y-Y, Liu T (2013) Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J Power Sources 226:82–86CrossRef
6.
go back to reference Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243CrossRef Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4(9):3243CrossRef
7.
go back to reference Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176PubMedCrossRef Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176PubMedCrossRef
8.
go back to reference Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21(45):4593–4607CrossRef Li H, Wang Z, Chen L, Huang X (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21(45):4593–4607CrossRef
9.
go back to reference Lee J, Lee C-L, Park K, Kim I-D (2014) Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries. J Power Sources 248:1211–1217CrossRef Lee J, Lee C-L, Park K, Kim I-D (2014) Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries. J Power Sources 248:1211–1217CrossRef
10.
go back to reference Fang L-F, Shi J-L, Zhu B-K, Zhu L-P (2013) Facile introduction of polyether chains onto polypropylene separators and its application in lithium ion batteries. J Membr Sci 448:143–150CrossRef Fang L-F, Shi J-L, Zhu B-K, Zhu L-P (2013) Facile introduction of polyether chains onto polypropylene separators and its application in lithium ion batteries. J Membr Sci 448:143–150CrossRef
11.
go back to reference Lee MJ, Hwang J-K, Kim JH, Lim H-S, Sun Y-K, Suh K-D, Lee YM (2016) Electrochemical performance of a thermally rearranged polybenzoxazole nanocomposite membrane as a separator for lithium-ion batteries at elevated temperature. J Power Sources 305:259–266CrossRef Lee MJ, Hwang J-K, Kim JH, Lim H-S, Sun Y-K, Suh K-D, Lee YM (2016) Electrochemical performance of a thermally rearranged polybenzoxazole nanocomposite membrane as a separator for lithium-ion batteries at elevated temperature. J Power Sources 305:259–266CrossRef
12.
go back to reference Ganesh Venugopal JM, Howard J, Pendalwar S (1999) Characterization of microporous separators for lithium-ion batteries. J Power Sources 77(1):34–41CrossRef Ganesh Venugopal JM, Howard J, Pendalwar S (1999) Characterization of microporous separators for lithium-ion batteries. J Power Sources 77(1):34–41CrossRef
13.
go back to reference Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224CrossRef Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224CrossRef
14.
go back to reference Kitoh K, Nemoto H (1999) 100 Wh large size Li-ion batteries and safety tests. J Power Sources 81-82:887–890CrossRef Kitoh K, Nemoto H (1999) 100 Wh large size Li-ion batteries and safety tests. J Power Sources 81-82:887–890CrossRef
15.
go back to reference Xie Y, Zou H, Xiang H, Xia R, Liang D, Shi P, Dai S, Wang H (2016) Enhancement on the wettability of lithium battery separator toward nonaqueous electrolytes. J Membr Sci 503:25–30CrossRef Xie Y, Zou H, Xiang H, Xia R, Liang D, Shi P, Dai S, Wang H (2016) Enhancement on the wettability of lithium battery separator toward nonaqueous electrolytes. J Membr Sci 503:25–30CrossRef
16.
go back to reference Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164(1):351–364CrossRef Zhang SS (2007) A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources 164(1):351–364CrossRef
17.
go back to reference Wang Q (2015) Robust and thermal-enhanced melamine formaldehyde–modified glassfiber composite separator for high-performance lithium batteries. Electrochim Acta 182:334–341CrossRef Wang Q (2015) Robust and thermal-enhanced melamine formaldehyde–modified glassfiber composite separator for high-performance lithium batteries. Electrochim Acta 182:334–341CrossRef
18.
go back to reference Jiang F, Yin L, Yu Q, Zhong C, Zhang J (2015) Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries. J Power Sources 279:21–27CrossRef Jiang F, Yin L, Yu Q, Zhong C, Zhang J (2015) Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries. J Power Sources 279:21–27CrossRef
19.
go back to reference Jiang F, Nie Y, Yin L, Feng Y, Yu Q, Zhong C (2016) Core–shell-structured nanofibrous membrane as advanced separator for lithium-ion batteries. J Membr Sci 510:1–9CrossRef Jiang F, Nie Y, Yin L, Feng Y, Yu Q, Zhong C (2016) Core–shell-structured nanofibrous membrane as advanced separator for lithium-ion batteries. J Membr Sci 510:1–9CrossRef
20.
go back to reference Zhai Y, Xiao K, Yu J, Yang J, Ding B (2015) Thermostable and nonflammable silica–polyetherimide–polyurethane nanofibrous separators for high power lithium ion batteries. J Mater Chem A 3(19):10551–10558CrossRef Zhai Y, Xiao K, Yu J, Yang J, Ding B (2015) Thermostable and nonflammable silica–polyetherimide–polyurethane nanofibrous separators for high power lithium ion batteries. J Mater Chem A 3(19):10551–10558CrossRef
22.
go back to reference Yang P, Zhang P, Shi C, Chen L, Dai J, Zhao J (2015) The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries. J Membr Sci 474:148–155CrossRef Yang P, Zhang P, Shi C, Chen L, Dai J, Zhao J (2015) The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries. J Membr Sci 474:148–155CrossRef
23.
go back to reference Jeon H, Yeon D, Lee T, Park J, Ryou M-H, Lee YM (2016) A water-based Al 2 O 3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries. J Power Sources 315:161–168CrossRef Jeon H, Yeon D, Lee T, Park J, Ryou M-H, Lee YM (2016) A water-based Al 2 O 3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries. J Power Sources 315:161–168CrossRef
24.
go back to reference Ding L, Xu G, Ge Q, Wu T, Yang F, Xiang M (2017) Effect of Fumed SiO2 on pore formation mechanism and various performances of β-iPP microporous membrane used for Lithium-ion battery separator. Chin J Polym Sci 36(4):536–545CrossRef Ding L, Xu G, Ge Q, Wu T, Yang F, Xiang M (2017) Effect of Fumed SiO2 on pore formation mechanism and various performances of β-iPP microporous membrane used for Lithium-ion battery separator. Chin J Polym Sci 36(4):536–545CrossRef
25.
go back to reference Kong L, Liu B, Ding J, Yan X, Tian G, Qi S, Wu D (2018) Robust polyetherimide fibrous membrane with crosslinked topographies fabricated via in-situ micro-melting and its application as superior Lithium-ion battery separator with shutdown function. J Membr Sci 549:244–250CrossRef Kong L, Liu B, Ding J, Yan X, Tian G, Qi S, Wu D (2018) Robust polyetherimide fibrous membrane with crosslinked topographies fabricated via in-situ micro-melting and its application as superior Lithium-ion battery separator with shutdown function. J Membr Sci 549:244–250CrossRef
26.
go back to reference Ji W, Jiang B, Ai F, Yang H, Ai X (2015) Temperature-responsive microspheres-coated separator for thermal shutdown protection of lithium ion batteries. RSC Adv 5(1):172–176CrossRef Ji W, Jiang B, Ai F, Yang H, Ai X (2015) Temperature-responsive microspheres-coated separator for thermal shutdown protection of lithium ion batteries. RSC Adv 5(1):172–176CrossRef
27.
go back to reference Hao X, Zhu J, Jiang X, Wu H, Qiao J, Sun W, Wang Z, Sun K (2016) Ultrastrong Polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators. Nano Lett 16(5):2981–2987PubMedCrossRef Hao X, Zhu J, Jiang X, Wu H, Qiao J, Sun W, Wang Z, Sun K (2016) Ultrastrong Polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators. Nano Lett 16(5):2981–2987PubMedCrossRef
28.
go back to reference Hu S, Lin S, Tu Y, Hu J, Wu Y, Liu G, Li F, Yu F, Jiang T (2016) Novel aramid nanofiber-coated polypropylene separators for lithium ion batteries. J Mater Chem A 4(9):3513–3526CrossRef Hu S, Lin S, Tu Y, Hu J, Wu Y, Liu G, Li F, Yu F, Jiang T (2016) Novel aramid nanofiber-coated polypropylene separators for lithium ion batteries. J Mater Chem A 4(9):3513–3526CrossRef
29.
go back to reference Lundquist JT, Lundsager CB, Palmer NI, Troffkin HJ (1987) Battery separator. United States Patent 4731304 Lundquist JT, Lundsager CB, Palmer NI, Troffkin HJ (1987) Battery separator. United States Patent 4731304
30.
go back to reference Wei-Ching Yu MWG (1996) Shutdown, bilayer battery separator. United States Patent 5565281A Wei-Ching Yu MWG (1996) Shutdown, bilayer battery separator. United States Patent 5565281A
31.
go back to reference Marong Tang RG, RAGOSTA G, CIMMINO S (1983) Journal of materials Science 18: 1031–1038 Marong Tang RG, RAGOSTA G, CIMMINO S (1983) Journal of materials Science 18: 1031–1038
32.
go back to reference Wayne LD, Leroy KC (1967) Battery separator. United States Patent 3351495 Wayne LD, Leroy KC (1967) Battery separator. United States Patent 3351495
33.
go back to reference Yu W-C, Dwiggins CF (1997) Methods of making cross-ply microporous membrane battery separator, and the battery separators made thereby United States Patent 5667911 Yu W-C, Dwiggins CF (1997) Methods of making cross-ply microporous membrane battery separator, and the battery separators made thereby United States Patent 5667911
34.
go back to reference Yu W-C (1997) Shutdown, trilayer battery separator. United States Patent 5691077 Yu W-C (1997) Shutdown, trilayer battery separator. United States Patent 5691077
35.
go back to reference Yu T-H (2000) Trilayer battery separator. United States Patent 6080507 Yu T-H (2000) Trilayer battery separator. United States Patent 6080507
36.
go back to reference Yu W-C (2005) Continuous methods of making microporous battery separators. United States Patent 6878226 Yu W-C (2005) Continuous methods of making microporous battery separators. United States Patent 6878226
37.
go back to reference Callahan RW, Call RW, Harleson KJ, Yu T-H (2003) Battery separators with reduced splitting propensity. United States Patent 6602593 Callahan RW, Call RW, Harleson KJ, Yu T-H (2003) Battery separators with reduced splitting propensity. United States Patent 6602593
38.
go back to reference Kawabata K, Abe K (2009) Battery separator and lithium secondary battery. United States Patent 7595130 Kawabata K, Abe K (2009) Battery separator and lithium secondary battery. United States Patent 7595130
39.
go back to reference Zhang H-Y, Lv Y (2017) Mechanical properties and crystalline structures of PPR modified by SEBS elastomer and rare-earth β nucleating agent. Chem Pap 71(12):2533–2543CrossRef Zhang H-Y, Lv Y (2017) Mechanical properties and crystalline structures of PPR modified by SEBS elastomer and rare-earth β nucleating agent. Chem Pap 71(12):2533–2543CrossRef
40.
go back to reference Schammé B, Dargent E, Fernandez-Ballester L (2017) Effect of random ethylene Comonomer on relaxation of flow-induced precursors in isotactic polypropylene. Macromolecules 50(17):6396–6403CrossRef Schammé B, Dargent E, Fernandez-Ballester L (2017) Effect of random ethylene Comonomer on relaxation of flow-induced precursors in isotactic polypropylene. Macromolecules 50(17):6396–6403CrossRef
41.
go back to reference Wu T, Xiang M, Cao Y, Kang J, Yang F (2014) Pore formation mechanism of β nucleated polypropylene stretched membranes. RSC Adv 4(69):36689–36701CrossRef Wu T, Xiang M, Cao Y, Kang J, Yang F (2014) Pore formation mechanism of β nucleated polypropylene stretched membranes. RSC Adv 4(69):36689–36701CrossRef
42.
go back to reference Varga J (2007) β-Modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci, Part B: Phys 41(4–6):1121–1171 Varga J (2007) β-Modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci, Part B: Phys 41(4–6):1121–1171
43.
go back to reference Ding L, Wu T, Yang F, Xiang M (2017) Deformation and pore formation mechanism under tensile loading in isotactic polypropylene. Polym Int 66(8):1129–1140CrossRef Ding L, Wu T, Yang F, Xiang M (2017) Deformation and pore formation mechanism under tensile loading in isotactic polypropylene. Polym Int 66(8):1129–1140CrossRef
44.
go back to reference Aboulfaraj M, G'Sell C, Ulrich B, Dahoun A (1995) In situ observation of the plastic deformation of polypropylene spherulites under uniaxial tension and simple shear in the scanning electron microscope. Polym Int 36(4):731–742CrossRef Aboulfaraj M, G'Sell C, Ulrich B, Dahoun A (1995) In situ observation of the plastic deformation of polypropylene spherulites under uniaxial tension and simple shear in the scanning electron microscope. Polym Int 36(4):731–742CrossRef
45.
go back to reference Ding L, Wu T, Ge Q, Xu G, Yang F, Xiang M (2017) Investigation of deformation and pore formation in isotactic polypropylene containing active nano-CaCO3. Polym Int 66(11):1498–1509CrossRef Ding L, Wu T, Ge Q, Xu G, Yang F, Xiang M (2017) Investigation of deformation and pore formation in isotactic polypropylene containing active nano-CaCO3. Polym Int 66(11):1498–1509CrossRef
46.
go back to reference Zhu W, Zhang X, Zhao C, Wu W, Hou J, Xu M (1996) A novel polypropylene microporous film. Polym Adv Technol 7(9):743–748CrossRef Zhu W, Zhang X, Zhao C, Wu W, Hou J, Xu M (1996) A novel polypropylene microporous film. Polym Adv Technol 7(9):743–748CrossRef
47.
go back to reference Liu S, Zhou C, Yu W (2011) Phase separation and structure control in ultra-high molecular weight polyethylene microporous membrane. J Membr Sci 379(1–2):268–278CrossRef Liu S, Zhou C, Yu W (2011) Phase separation and structure control in ultra-high molecular weight polyethylene microporous membrane. J Membr Sci 379(1–2):268–278CrossRef
48.
go back to reference Fu D, Luan B, Argue S, Bureau MN, Davidson IJ (2012) Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries. J Power Sources 206:325–333CrossRef Fu D, Luan B, Argue S, Bureau MN, Davidson IJ (2012) Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries. J Power Sources 206:325–333CrossRef
49.
go back to reference Osińska M, Walkowiak M, Zalewska A, Jesionowski T (2009) Study of the role of ceramic filler in composite gel electrolytes based on microporous polymer membranes. J Membr Sci 326(2):582–588CrossRef Osińska M, Walkowiak M, Zalewska A, Jesionowski T (2009) Study of the role of ceramic filler in composite gel electrolytes based on microporous polymer membranes. J Membr Sci 326(2):582–588CrossRef
50.
go back to reference Marrucci G, Ianniruberto G (2004) Interchain pressure effect in extensional flows of entangled polymer. Macromolecules 37(10):3934–3942CrossRef Marrucci G, Ianniruberto G (2004) Interchain pressure effect in extensional flows of entangled polymer. Macromolecules 37(10):3934–3942CrossRef
51.
go back to reference Kato S, Tanaka H, Yamanobe T, Uehara H (2015) In situ analysis of melt-drawing behavior of ultrahigh molecular weight polyethylene films with different molecular weights: roles of entanglements on oriented crystallization. J Phys Chem B 119(15):5062–5070PubMedCrossRef Kato S, Tanaka H, Yamanobe T, Uehara H (2015) In situ analysis of melt-drawing behavior of ultrahigh molecular weight polyethylene films with different molecular weights: roles of entanglements on oriented crystallization. J Phys Chem B 119(15):5062–5070PubMedCrossRef
52.
go back to reference Li J, Huang Y, Zhang S, Jia W, Wang X, Guo Y, Jia D, Wang L (2017) Decoration of silica nanoparticles on polypropylene separator for Lithium-sulfur batteries. ACS Appl Mater Interfaces 9(8):7499–7504PubMedCrossRef Li J, Huang Y, Zhang S, Jia W, Wang X, Guo Y, Jia D, Wang L (2017) Decoration of silica nanoparticles on polypropylene separator for Lithium-sulfur batteries. ACS Appl Mater Interfaces 9(8):7499–7504PubMedCrossRef
53.
go back to reference Wang Y, Wang S, Fang J, Ding L-X, Wang H (2017) A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J Membr Sci 537:248–254CrossRef Wang Y, Wang S, Fang J, Ding L-X, Wang H (2017) A nano-silica modified polyimide nanofiber separator with enhanced thermal and wetting properties for high safety lithium-ion batteries. J Membr Sci 537:248–254CrossRef
Metadata
Title
Effect of PPR on the pore formation behavior and pore performances of β-iPP microporous membrane used for Lithium-ion battery separator
Authors
Guan Xu
Lei Ding
Tong Wu
Ming Xiang
Feng Yang
Publication date
01-02-2019
Publisher
Springer Netherlands
Published in
Journal of Polymer Research / Issue 2/2019
Print ISSN: 1022-9760
Electronic ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-018-1689-x

Other articles of this Issue 2/2019

Journal of Polymer Research 2/2019 Go to the issue

Premium Partners