Skip to main content
Top
Published in: Journal of Iron and Steel Research International 6/2022

10-02-2022 | Original Paper

Effect of strain rate on fracture behaviour of Cr18Ni11Ti stainless steel at high temperatures

Authors: Xin-li Song, Chang-hu Huang, Juan Jia, Jing Liu

Published in: Journal of Iron and Steel Research International | Issue 6/2022

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effect of strain rate on the fracture behaviour of Cr18Ni11Ti stainless steel at high temperatures was analysed. The steel was subjected to solid solution treatment at 1050 °C and ageing at 650 °C for 24 h. The high-temperature tensile properties of Cr18Ni11Ti stainless steel were subsequently investigated via high-temperature tensile testing at 650 °C and different strain rates (1.43 × 10–1, 1.43 × 10–2, 1.43 × 10–3, 1.43 × 10–4, and 1.43 × 10–5 s−1). The microstructure, precipitated phase, tensile fracture surface, and dislocation of the experimental steel were analysed by scanning electron microscopy, transmission electron microscopy and energy spectrometry. The results show that Cr18Ni11Ti stainless steel is mainly austenite, with a large number of twin crystals, chromium-rich precipitated phase and composite precipitated phases of TiC and AlMgCaO. With decreases in strain rate, the yield strength, ultimate tensile strength, and reduction in area also decrease. When the strain rate is high, obvious necking and ductile fracture occur in the experimental steel. However, when the strain rate is reduced to 1.43 × 10–5 s−1, the necking phenomenon is not obvious and intergranular brittle fracture appears. Greater segregation of P and S contents at grain boundaries, or dislocation motion creep and grain-boundary sliding creep, leads to brittle fracture of the steel at lower strain rates of 1.43 × 10–4 to 1.43 × 10–5 s−1.
Literature
[1]
go back to reference A. Aletdinov, S. Mironov, G.F. Korznikova, T. Konkova, R.G. Zaripova, M.M. Myshlyaev, S.L. Semiatin, Metall. Mater. Trans. 50 (2019) 1346–1357.CrossRef A. Aletdinov, S. Mironov, G.F. Korznikova, T. Konkova, R.G. Zaripova, M.M. Myshlyaev, S.L. Semiatin, Metall. Mater. Trans. 50 (2019) 1346–1357.CrossRef
[2]
go back to reference X.R. Chen, G.G. Cheng, Y.Y. Hou, J.Y. Li, J.X. Pan, J. Iron Steel Res. Int. 27 (2020) 913–921.CrossRef X.R. Chen, G.G. Cheng, Y.Y. Hou, J.Y. Li, J.X. Pan, J. Iron Steel Res. Int. 27 (2020) 913–921.CrossRef
[3]
go back to reference A.A. Tiamiyu, A.G. Odeshi, J.A. Szpunar, Mater. Sci. Eng. A 711 (2018) 233–249.CrossRef A.A. Tiamiyu, A.G. Odeshi, J.A. Szpunar, Mater. Sci. Eng. A 711 (2018) 233–249.CrossRef
[4]
go back to reference W. Li, H.T. Chen, C. Li, W.Y. Huang, J. Chen, L. Zuo, Y.J. Ren, J.J. He, S.D. Zhang, Mater. Des. 205 (2021) 109729.CrossRef W. Li, H.T. Chen, C. Li, W.Y. Huang, J. Chen, L. Zuo, Y.J. Ren, J.J. He, S.D. Zhang, Mater. Des. 205 (2021) 109729.CrossRef
[5]
go back to reference E. Viyanit, S. Keawkumsai, K. Wongpinkeaw, N. Bunchoo, W. Khonraeng, T. Trachoo, Th. Boellinghaus, Eng. Fail. Anal. 100 (2019) 288–299.CrossRef E. Viyanit, S. Keawkumsai, K. Wongpinkeaw, N. Bunchoo, W. Khonraeng, T. Trachoo, Th. Boellinghaus, Eng. Fail. Anal. 100 (2019) 288–299.CrossRef
[6]
go back to reference H.A. Rezai, M.S. Ghazani, B. Eghbali, Mater. Sci. Eng. A 736 (2018) 364–374.CrossRef H.A. Rezai, M.S. Ghazani, B. Eghbali, Mater. Sci. Eng. A 736 (2018) 364–374.CrossRef
[7]
[8]
go back to reference S. Pour-Ali, M. Weiser, N.T. Nguyen, A. Kiani-Rashid, A. Babakhani, S. Virtanen, Corros. Sci. 163 (2020) 108282.CrossRef S. Pour-Ali, M. Weiser, N.T. Nguyen, A. Kiani-Rashid, A. Babakhani, S. Virtanen, Corros. Sci. 163 (2020) 108282.CrossRef
[9]
go back to reference J.M. Wang, H.Z. Su, K. Chen, D.H. Du, L.F. Zhang, Z. Shen, Corros. Sci. 158 (2019) 108079.CrossRef J.M. Wang, H.Z. Su, K. Chen, D.H. Du, L.F. Zhang, Z. Shen, Corros. Sci. 158 (2019) 108079.CrossRef
[10]
go back to reference R.X. Sun, L. Xu, W.B. Zhao, Light Metals (2012) No. 8, 59–61. R.X. Sun, L. Xu, W.B. Zhao, Light Metals (2012) No. 8, 59–61.
[11]
go back to reference H.M. Wang, P.D. Wu, S. Kurukuri, M.J. Worswick, Y.H. Peng, D. Tang, D.Y. Li, Int. J. Plast. 107 (2018) 207–222.CrossRef H.M. Wang, P.D. Wu, S. Kurukuri, M.J. Worswick, Y.H. Peng, D. Tang, D.Y. Li, Int. J. Plast. 107 (2018) 207–222.CrossRef
[12]
go back to reference X. Ma, F. Li, J. Cao, J. Li, Z. Sun, G. Zhu, S. Zhou, Mater. Sci. Eng. A 710 (2018) 1–9.CrossRef X. Ma, F. Li, J. Cao, J. Li, Z. Sun, G. Zhu, S. Zhou, Mater. Sci. Eng. A 710 (2018) 1–9.CrossRef
[13]
[14]
go back to reference Z.J. Wang, H.L. Ding, Z.D. Xiao, C.X. Yang, C.C. Xiang, Mater. Sci. Eng. A 826 (2021) 141997.CrossRef Z.J. Wang, H.L. Ding, Z.D. Xiao, C.X. Yang, C.C. Xiang, Mater. Sci. Eng. A 826 (2021) 141997.CrossRef
[15]
go back to reference A.A. Tiamiyu, U. Eduok, A.G. Odeshi, J.A. Szpunar, Mater. Sci. Eng. A 745 (2019) 1–9.CrossRef A.A. Tiamiyu, U. Eduok, A.G. Odeshi, J.A. Szpunar, Mater. Sci. Eng. A 745 (2019) 1–9.CrossRef
[16]
go back to reference W. Huo, H. Zhou, F. Feng, X. Hu, Z. Xie, J. Jiang, Mater. Sci. Eng. A 689 (2017) 366–369.CrossRef W. Huo, H. Zhou, F. Feng, X. Hu, Z. Xie, J. Jiang, Mater. Sci. Eng. A 689 (2017) 366–369.CrossRef
[17]
go back to reference Q.L. Yong, Second phase of iron and steel materials, Metallurgical Industry Press, Beijing, China, 2006. Q.L. Yong, Second phase of iron and steel materials, Metallurgical Industry Press, Beijing, China, 2006.
[18]
go back to reference J.T. Xie, Q.J. Wang, L.Y. Wang, Forging & Stamping Technology 44 (2019) 178–182. J.T. Xie, Q.J. Wang, L.Y. Wang, Forging & Stamping Technology 44 (2019) 178–182.
[19]
go back to reference T. Xu, S. Wang, X. Li, M. Wu, W. Wang, N. Mitsuzaki, Z. Chen, Mater. Sci. Eng. A 770 (2020) 138574.CrossRef T. Xu, S. Wang, X. Li, M. Wu, W. Wang, N. Mitsuzaki, Z. Chen, Mater. Sci. Eng. A 770 (2020) 138574.CrossRef
[20]
go back to reference S.V. Astafurov, G.G. Maier, E.V. Melnikov, V.A. Moskvina, M.Y. Panchenko, E.G. Astafurova, Mater. Sci. Eng. A 756 (2018) 365–372.CrossRef S.V. Astafurov, G.G. Maier, E.V. Melnikov, V.A. Moskvina, M.Y. Panchenko, E.G. Astafurova, Mater. Sci. Eng. A 756 (2018) 365–372.CrossRef
[21]
[22]
go back to reference X. Bai, S.J. Wu, L.J. Wei, S. Luo, X. Xie, P.K. Liaw, J. Iron Steel Res. Int. 25 (2018) 767–775.CrossRef X. Bai, S.J. Wu, L.J. Wei, S. Luo, X. Xie, P.K. Liaw, J. Iron Steel Res. Int. 25 (2018) 767–775.CrossRef
[23]
go back to reference F. Ozturk, A. Polat, S. Toros, R.C. Picu, J. Iron Steel Res. Int. 20 (2013) No. 6, 68–74.CrossRef F. Ozturk, A. Polat, S. Toros, R.C. Picu, J. Iron Steel Res. Int. 20 (2013) No. 6, 68–74.CrossRef
[24]
[25]
go back to reference A. Alomari, N. Kumar, K.L. Murty, Metall. Mater. Trans. A 50 (2019) 641–654.CrossRef A. Alomari, N. Kumar, K.L. Murty, Metall. Mater. Trans. A 50 (2019) 641–654.CrossRef
[31]
[32]
Metadata
Title
Effect of strain rate on fracture behaviour of Cr18Ni11Ti stainless steel at high temperatures
Authors
Xin-li Song
Chang-hu Huang
Juan Jia
Jing Liu
Publication date
10-02-2022
Publisher
Springer Nature Singapore
Published in
Journal of Iron and Steel Research International / Issue 6/2022
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-021-00715-x

Other articles of this Issue 6/2022

Journal of Iron and Steel Research International 6/2022 Go to the issue

Premium Partners