Skip to main content
Top
Published in: Journal of Iron and Steel Research International 5/2022

25-10-2021 | Original Paper

Effect of surface layer softening from previous electrochemical corrosion on electrochemical cold drawing of Q235 steel bar

Authors: J.L. Guo, T.J. Chen

Published in: Journal of Iron and Steel Research International | Issue 5/2022

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The effects of H2SO4 concentration and current in electrochemical corrosion on surface layer softening or plasticizing of Q235 steel bar and their effects on subsequent electrochemical cold drawing (ECD) were investigated. The results indicate that the electrochemical corrosion can soften or plasticize the surface layer of Q235 steel bar and then make the subsequent ECD be conducted more easily. The softening degree and thickness of the surface layer are continuously enhanced with increasing corrosion rate, i.e., increasing H2SO4 concentration or current, due to the generation of more vacancy clusters in deeper regions of surface layer. These vacancy clusters then relax dislocations through being absorbed during ECD, and the formation and movement of additional dislocation flux are thereby enhanced, resulting in the further obvious decrease in the drawing force. It is also due to the enhanced formation and movement of additional dislocation flux that the dislocation density and thus the hardness of the surface layer are decreased, as well as that the texture structure is weakened. These behaviors are enhanced as the corrosion rate increases.
Literature
[1]
go back to reference L. Li, T. Chen, S. Zhang, E.M. Gutman, Y. Unigovski, F. Yan, Mater. Sci. Technol. 33 (2017) 244–254.CrossRef L. Li, T. Chen, S. Zhang, E.M. Gutman, Y. Unigovski, F. Yan, Mater. Sci. Technol. 33 (2017) 244–254.CrossRef
[2]
go back to reference N. Kotkunde, A.D. Deole, A.K. Gupta, S.K. Singh, Mater. Des. 60 (2014) 540–547.CrossRef N. Kotkunde, A.D. Deole, A.K. Gupta, S.K. Singh, Mater. Des. 60 (2014) 540–547.CrossRef
[3]
go back to reference K.S. Prasad, S.K. Panda, S.K. Kar, S.V.S.N. Murty, S.C. Sharma, Mater. Sci. Eng. A 733 (2018) 393–407.CrossRef K.S. Prasad, S.K. Panda, S.K. Kar, S.V.S.N. Murty, S.C. Sharma, Mater. Sci. Eng. A 733 (2018) 393–407.CrossRef
[4]
go back to reference S. He, A. Van Bael, S.Y. Li, P. Van Houtte, F. Mei, A. Sarban, Mater. Sci. Eng. A 346 (2003) 101–107.CrossRef S. He, A. Van Bael, S.Y. Li, P. Van Houtte, F. Mei, A. Sarban, Mater. Sci. Eng. A 346 (2003) 101–107.CrossRef
[5]
go back to reference H.L. Seet, X.P. Li, K.S. Lee, L.Q. Liu, J. Mater. Process. Technol. 192–193 (2007) 350–354.CrossRef H.L. Seet, X.P. Li, K.S. Lee, L.Q. Liu, J. Mater. Process. Technol. 192–193 (2007) 350–354.CrossRef
[6]
go back to reference L.L. Li, T.J. Chen, S.Q. Zhang, F.Y Yan, J. Mater. Process. Technol. 240 (2017) 33–41. L.L. Li, T.J. Chen, S.Q. Zhang, F.Y Yan, J. Mater. Process. Technol. 240 (2017) 33–41.
[7]
[8]
go back to reference S. Liu, X.B. Shan, K. Guo, Y.C. Yang, T. Xie, Ultrasonics 83 (2018) 60–67.CrossRef S. Liu, X.B. Shan, K. Guo, Y.C. Yang, T. Xie, Ultrasonics 83 (2018) 60–67.CrossRef
[9]
[10]
go back to reference M. Hayashi, M. Jin, S. Thipprakmas, M. Murakawa, J.C. Hung, Y.C. Tsai, C.H. Hung, J. Mater. Process. Technol. 140 (2003) 30–35.CrossRef M. Hayashi, M. Jin, S. Thipprakmas, M. Murakawa, J.C. Hung, Y.C. Tsai, C.H. Hung, J. Mater. Process. Technol. 140 (2003) 30–35.CrossRef
[11]
go back to reference J. Petruzelka, J. Sarmanova, A. Sarman, J. Mater. Process. Technol. 60 (1996) 661–668.CrossRef J. Petruzelka, J. Sarmanova, A. Sarman, J. Mater. Process. Technol. 60 (1996) 661–668.CrossRef
[12]
go back to reference V.L.A. Silveira, R.A.F.O. Fortes, W.A. Mannheimer, Scripta Metall. 17 (1983) 1381–1382.CrossRef V.L.A. Silveira, R.A.F.O. Fortes, W.A. Mannheimer, Scripta Metall. 17 (1983) 1381–1382.CrossRef
[13]
go back to reference G.Y. Tang, M.X. Zheng, Y.H. Zhu, J. Zhang, W. Fang, Q. Li, J. Mater. Process. Technol. 84 (1998) 268–270.CrossRef G.Y. Tang, M.X. Zheng, Y.H. Zhu, J. Zhang, W. Fang, Q. Li, J. Mater. Process. Technol. 84 (1998) 268–270.CrossRef
[14]
go back to reference G.Y. Tang, J. Zhang, Y.J. Yan, H.H. Zhou, W. Fang, J. Mater. Process. Technol. 137 (2003) 96–99.CrossRef G.Y. Tang, J. Zhang, Y.J. Yan, H.H. Zhou, W. Fang, J. Mater. Process. Technol. 137 (2003) 96–99.CrossRef
[15]
go back to reference E.M. Gutman, Mechanochemistry of Solid Surfaces, World Scientific Publishing Co., Pte. Ltd., New Jersey, USA, 1994.CrossRef E.M. Gutman, Mechanochemistry of Solid Surfaces, World Scientific Publishing Co., Pte. Ltd., New Jersey, USA, 1994.CrossRef
[16]
[18]
[20]
go back to reference Y.B. Unigovski, E.M. Gutman, Z. Koren, B. Borohov, J. Met. Mater. Miner. 22 (2012) 137–140. Y.B. Unigovski, E.M. Gutman, Z. Koren, B. Borohov, J. Met. Mater. Miner. 22 (2012) 137–140.
[21]
go back to reference E.M. Gutman, Y. Unigovski, R. Shneck, F. Ye, Y. Liang, Appl. Surf. Sci. 388 (2016) 49–56.CrossRef E.M. Gutman, Y. Unigovski, R. Shneck, F. Ye, Y. Liang, Appl. Surf. Sci. 388 (2016) 49–56.CrossRef
[22]
go back to reference T.J. Chen, B.Q. Yang, B. Li, J.L. Guo, P. Zhang, X.Z. Cao, J. Mater. Process. Technol. 275 (2020) 116375. T.J. Chen, B.Q. Yang, B. Li, J.L. Guo, P. Zhang, X.Z. Cao, J. Mater. Process. Technol. 275 (2020) 116375.
[24]
[25]
go back to reference Z.Y. Cui, Z.Y. Liu, L.W. Wang, X.G. Li, C.W. Du, X. Wang, Mater. Sci. Eng. A. 677 (2016) 259–273.CrossRef Z.Y. Cui, Z.Y. Liu, L.W. Wang, X.G. Li, C.W. Du, X. Wang, Mater. Sci. Eng. A. 677 (2016) 259–273.CrossRef
[26]
go back to reference X.Z. Zhang, T.J. Chen, Mater. Des. 191 (2020) 108695. X.Z. Zhang, T.J. Chen, Mater. Des. 191 (2020) 108695.
[27]
go back to reference X.M. Deng, L.L. Xie, L.M. Yan, in: X.M. Deng, L.L. Xie, L.M. Yan (Eds.), Metal extrusion and drawing engineering, Hefei University of Technology Press, Hefei, China, 2014. X.M. Deng, L.L. Xie, L.M. Yan, in: X.M. Deng, L.L. Xie, L.M. Yan (Eds.), Metal extrusion and drawing engineering, Hefei University of Technology Press, Hefei, China, 2014.
[28]
go back to reference Z. Panossian, N.L. de Almeida, R.M.F. de Sousa, G. de S. Pimenta, L.B.S. Marques, Corros. Sci. 58 (2012) 1–11. Z. Panossian, N.L. de Almeida, R.M.F. de Sousa, G. de S. Pimenta, L.B.S. Marques, Corros. Sci. 58 (2012) 1–11.
[29]
[30]
[31]
go back to reference X.G. Zhang, Electrochemical Thermodynamics and Kinetics, Corrosion and Electrochemistry of Zinc, Springer, Boston, MA, USA, 1996. X.G. Zhang, Electrochemical Thermodynamics and Kinetics, Corrosion and Electrochemistry of Zinc, Springer, Boston, MA, USA, 1996.
[32]
go back to reference K. Elayaperumal, V.S. Raja, Corrosion Failures, John Wiley & Sons, New Jersey, USA, 2015.CrossRef K. Elayaperumal, V.S. Raja, Corrosion Failures, John Wiley & Sons, New Jersey, USA, 2015.CrossRef
[33]
go back to reference E. Detsi, M. van de Schootbrugge, S. Punzhin, P.R. Onck, J.T.M. De Hosson, Scripta Mater. 64 (2011) 319–322.CrossRef E. Detsi, M. van de Schootbrugge, S. Punzhin, P.R. Onck, J.T.M. De Hosson, Scripta Mater. 64 (2011) 319–322.CrossRef
[35]
[36]
[37]
[39]
[41]
go back to reference Y.Z. Xu, L. Liu, Q.P. Zhou, X.N. Wang, Y. Huang, Wear 442–443 (2020) 203151. Y.Z. Xu, L. Liu, Q.P. Zhou, X.N. Wang, Y. Huang, Wear 442–443 (2020) 203151.
[42]
go back to reference F. Fang, Y.F. Zhao, L.C. Zhou, X.J. Hu, Z.H. Xie, J. Jiang, Mater. Sci. Eng. A. 618 (2014) 505–510.CrossRef F. Fang, Y.F. Zhao, L.C. Zhou, X.J. Hu, Z.H. Xie, J. Jiang, Mater. Sci. Eng. A. 618 (2014) 505–510.CrossRef
Metadata
Title
Effect of surface layer softening from previous electrochemical corrosion on electrochemical cold drawing of Q235 steel bar
Authors
J.L. Guo
T.J. Chen
Publication date
25-10-2021
Publisher
Springer Nature Singapore
Published in
Journal of Iron and Steel Research International / Issue 5/2022
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-021-00675-2

Other articles of this Issue 5/2022

Journal of Iron and Steel Research International 5/2022 Go to the issue

Premium Partners