Skip to main content
Top

12-04-2024 | Original Paper

Effect of Ta content on high temperature oxidation and hot corrosion resistance of DZ411 superalloy

Authors: Peng Peng, Yi-fan Ma, Zi-jie Liu, Su-jun Lu, Yuan-li Xu, Xu-dong Zhang, Zhi-kun Ma

Published in: Journal of Iron and Steel Research International

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to elucidate the mechanism of the effect of Ta content on the high temperature behaviour of the alloys, the high temperature oxidation and thermal corrosion experiments were carried out on the three alloys with different Ta contents (2.72, 3.10 and 4.00 wt.%). The results of high temperature oxidation and hot corrosion show that because Ta has a higher valence state than Al, it can reduce the indiffusion of O, and the rate at which Ta diffuses within the alloy matrix is relatively slow since it has a larger atomic radius. As a result, the diffusion of the Al element is inhibited as the Ta content increases. Therefore, adding Ta inhibits the formation of Al2O3 in the surface oxide and promotes the formation of Cr2O3. Thus, Ta promotes oxidised film growth on the sample surface, which inhibits the diffusion of S, O and other elements into the matrix. Additionally, Cr2O3 is not easy to dissolve in molten salt, which ultimately makes the alloy have high oxidation resistance and thermal corrosion resistance.
Literature
[1]
go back to reference R. Reed, C. Rae, Physical metallurgy of the nickel-based superalloys, 5th ed., Physical Metallurgy, Cambridge, UK, Elsevier, 2014.CrossRef R. Reed, C. Rae, Physical metallurgy of the nickel-based superalloys, 5th ed., Physical Metallurgy, Cambridge, UK, Elsevier, 2014.CrossRef
[2]
go back to reference P. Peng, A. Zhang, S. Li, W. Zheng, L. Lu, Metall. Mater. Trans. A 52 (2021) 2691–2697.CrossRef P. Peng, A. Zhang, S. Li, W. Zheng, L. Lu, Metall. Mater. Trans. A 52 (2021) 2691–2697.CrossRef
[3]
go back to reference Y. Yuan, Y.F. Gu, Z.H. Zhong, T. Yokokawa, H. Harada, Mater. Sci. Eng. A 556 (2012) 595–600. Y. Yuan, Y.F. Gu, Z.H. Zhong, T. Yokokawa, H. Harada, Mater. Sci. Eng. A 556 (2012) 595–600.
[4]
go back to reference M. Srivastava, J.N. Balaraju, B. Ravisankar, C. Anandan, V.K. William Grips, Appl. Surf. Sci. 263 (2012) 597–607. M. Srivastava, J.N. Balaraju, B. Ravisankar, C. Anandan, V.K. William Grips, Appl. Surf. Sci. 263 (2012) 597–607.
[5]
go back to reference Y.X. Zhu, C. Li, Y.C. Liu, Z.Q. Ma, H.Y. Yu, J. Iron Steel Res. Int. 27 (2020) 1179–1189. Y.X. Zhu, C. Li, Y.C. Liu, Z.Q. Ma, H.Y. Yu, J. Iron Steel Res. Int. 27 (2020) 1179–1189.
[6]
go back to reference P. Peng, J. Yue, A. Zhang, X. Zhang, Y. Xu, Scripta Mater. 189 (2020) 42–47. P. Peng, J. Yue, A. Zhang, X. Zhang, Y. Xu, Scripta Mater. 189 (2020) 42–47.
[7]
go back to reference M.J. Donachie, S.J. Donachie, Superalloys: A Technical Guide, 2nd ed., Material Technology, New York, USA, 2002. M.J. Donachie, S.J. Donachie, Superalloys: A Technical Guide, 2nd ed., Material Technology, New York, USA, 2002.
[8]
go back to reference P. Peng, J. Yue, A. Zhang, X. Zhang, Y. Xu, J. Mater. Sci. Technol. 71 (2021) 169–176.CrossRef P. Peng, J. Yue, A. Zhang, X. Zhang, Y. Xu, J. Mater. Sci. Technol. 71 (2021) 169–176.CrossRef
[9]
go back to reference Z.X. Shi, J.R. Li, S.Z. Liu, X.G. Wang, X.D. Yue, J. Iron Steel Res. Int. 20 (2013) No. 3, 74–78.CrossRef Z.X. Shi, J.R. Li, S.Z. Liu, X.G. Wang, X.D. Yue, J. Iron Steel Res. Int. 20 (2013) No. 3, 74–78.CrossRef
[10]
go back to reference C.M.F. Rae, R.C. Reed, Acta Mater. 49 (2001) 4113–4125. C.M.F. Rae, R.C. Reed, Acta Mater. 49 (2001) 4113–4125.
[11]
go back to reference D.K. Gupta, R.A. Rapp, J. Electrochem. Soc. 127 (1980) 2194–2202. D.K. Gupta, R.A. Rapp, J. Electrochem. Soc. 127 (1980) 2194–2202.
[12]
go back to reference C.T. Sims, N.S. Stoloff, W.C. Hagel, Superalloys II: High temperature Materials for Aerospace and Industrial Power, John Wiley and Sons, New York, USA, 1987. C.T. Sims, N.S. Stoloff, W.C. Hagel, Superalloys II: High temperature Materials for Aerospace and Industrial Power, John Wiley and Sons, New York, USA, 1987.
[13]
go back to reference P. Peng, A. Zhang, J. Yue, S. Li, W. Zheng, L. Lu, J. Mater. Sci. Technol. 90 (2021) 236–242. P. Peng, A. Zhang, J. Yue, S. Li, W. Zheng, L. Lu, J. Mater. Sci. Technol. 90 (2021) 236–242.
[14]
go back to reference K. Peters, D. Whittle, J. Stringer, Corros. Sci. 16 (1977) 791–804. K. Peters, D. Whittle, J. Stringer, Corros. Sci. 16 (1977) 791–804.
[15]
go back to reference W.S. Walston, J.C. Schaeffer, A new type of microstructural instability in superalloys-SRZ, Superalloys 1996, Warrendale, USA, 1996. W.S. Walston, J.C. Schaeffer, A new type of microstructural instability in superalloys-SRZ, Superalloys 1996, Warrendale, USA, 1996.
[16]
go back to reference L. Zheng, G. Zhang, T.L. Lee, M.J. Gorley, Y. Wang, C. Xiao, Z. Li, Mater. Des. 61 (2014) 61–69. L. Zheng, G. Zhang, T.L. Lee, M.J. Gorley, Y. Wang, C. Xiao, Z. Li, Mater. Des. 61 (2014) 61–69.
[17]
go back to reference W. Yang, P. Qu, J. Sun, Q. Yue, H. Su, J. Zhang, L. Liu, Vacuum 181 (2020) 109682. W. Yang, P. Qu, J. Sun, Q. Yue, H. Su, J. Zhang, L. Liu, Vacuum 181 (2020) 109682.
[18]
go back to reference J. Wu, X. Jiang, Y. Wang, J. Dong, L. Lou, Mater. Sci. Eng. A 806 (2021) 140829. J. Wu, X. Jiang, Y. Wang, J. Dong, L. Lou, Mater. Sci. Eng. A 806 (2021) 140829.
[19]
[20]
go back to reference P. Peng, L. Lu, Z. Liu, Y. Xu, X. Zhang, Z. Ma, H. Zhang, M. Guo, L. Liu, J. Alloy. Compd. 927 (2022) 167009. P. Peng, L. Lu, Z. Liu, Y. Xu, X. Zhang, Z. Ma, H. Zhang, M. Guo, L. Liu, J. Alloy. Compd. 927 (2022) 167009.
[21]
go back to reference G.C. Fryburg, C.A. Stearns, F.J. Kohl, J. Electrochem. Soc. 124 (1977) 1147–1148. G.C. Fryburg, C.A. Stearns, F.J. Kohl, J. Electrochem. Soc. 124 (1977) 1147–1148.
[22]
go back to reference X. Lu, S. Tian, X. Yu, C. Wang, Rare Met. 30 (2011) 439–442. X. Lu, S. Tian, X. Yu, C. Wang, Rare Met. 30 (2011) 439–442.
[23]
go back to reference M. Moniruzzaman, Y. Murata, M. Morinaga, R. Hashizume, A. Yoshinari, Y. Fukui, ISIJ Int. 43 (2003) 1244–1252. M. Moniruzzaman, Y. Murata, M. Morinaga, R. Hashizume, A. Yoshinari, Y. Fukui, ISIJ Int. 43 (2003) 1244–1252.
[24]
go back to reference J.S. Zhang, Z.Q. Hu, Y. Murata, M. Morinaga, N. Yukawa, Metall. Trans. A 24 (1993) 2451–2464. J.S. Zhang, Z.Q. Hu, Y. Murata, M. Morinaga, N. Yukawa, Metall. Trans. A 24 (1993) 2451–2464.
[25]
go back to reference A. Jalowicka, W. Nowak, D. Naumenko, L. Singheiser, W.J. Quadakkers, Mater. Corros. 65 (2014) 178–187. A. Jalowicka, W. Nowak, D. Naumenko, L. Singheiser, W.J. Quadakkers, Mater. Corros. 65 (2014) 178–187.
[26]
go back to reference J. Chang, D. Wang, G. Zhang, L. Lou, J. Zhang, Corros. Sci. 117 (2017) 35–42.CrossRef J. Chang, D. Wang, G. Zhang, L. Lou, J. Zhang, Corros. Sci. 117 (2017) 35–42.CrossRef
[27]
go back to reference P. Peng, Z. Liu, X. Yan, Y. Ma, H. Zhang, J. Wang, J. Mater. Res. Technol. 24 (2023) 4784–4795. P. Peng, Z. Liu, X. Yan, Y. Ma, H. Zhang, J. Wang, J. Mater. Res. Technol. 24 (2023) 4784–4795.
[28]
go back to reference H.J. Christ, L. Berchtold, H.J. Sockel, Oxid. Met. 26 (1986) 45–76. H.J. Christ, L. Berchtold, H.J. Sockel, Oxid. Met. 26 (1986) 45–76.
[29]
go back to reference P. Peng, A. Zhang, J. Yue, X. Zhang, Y. Xu, J. Mater. Sci. Technol. 72 (2021) 197–201. P. Peng, A. Zhang, J. Yue, X. Zhang, Y. Xu, J. Mater. Sci. Technol. 72 (2021) 197–201.
[30]
go back to reference J.Y. Ji, Z. Zhang, J. Chen, H. Zhang, Y.Z. Zhang, H. Lu, Vacuum 211 (2023) 111923. J.Y. Ji, Z. Zhang, J. Chen, H. Zhang, Y.Z. Zhang, H. Lu, Vacuum 211 (2023) 111923.
[31]
[32]
go back to reference Z.X. Shi, J.R. Li, S.Z. Liu., J. Iron Steel Res. Int. 19 (2012) No. 7, 66–70. Z.X. Shi, J.R. Li, S.Z. Liu., J. Iron Steel Res. Int. 19 (2012) No. 7, 66–70.
[33]
go back to reference N.S. Bornstein, M.A. DeCrescente, Metall. Trans. 2 (1971) 2875–2883. N.S. Bornstein, M.A. DeCrescente, Metall. Trans. 2 (1971) 2875–2883.
[34]
go back to reference Wagner C., Zimens K., L.G. Sillén, A. Linnasalmi, P. Laukkanen, Acta Chem. Scand. 1 (1947) 547–565. Wagner C., Zimens K., L.G. Sillén, A. Linnasalmi, P. Laukkanen, Acta Chem. Scand. 1 (1947) 547–565.
[35]
go back to reference P. Peng, W. Chen, Y. Xu, X. Pei, J. Wang, Metall. Mater. Trans. A 53 (2022) 382–387. P. Peng, W. Chen, Y. Xu, X. Pei, J. Wang, Metall. Mater. Trans. A 53 (2022) 382–387.
Metadata
Title
Effect of Ta content on high temperature oxidation and hot corrosion resistance of DZ411 superalloy
Authors
Peng Peng
Yi-fan Ma
Zi-jie Liu
Su-jun Lu
Yuan-li Xu
Xu-dong Zhang
Zhi-kun Ma
Publication date
12-04-2024
Publisher
Springer Nature Singapore
Published in
Journal of Iron and Steel Research International
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-024-01201-w

Premium Partners