Skip to main content
Top

2021 | OriginalPaper | Chapter

Effect of Temperature and Salt Concentration on the Properties of Electrolyte for Sodium-Ion Batteries

Authors : Bharath Ravikumar, Surbhi Kumari, Mahesh Mynam, Beena Rai

Published in: Proceedings of the 7th International Conference on Advances in Energy Research

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electrolyte plays an important role in the success of rechargeable batteries. Identification of appropriate electrolyte materials for sodium-based batteries is an active research area today. Using molecular dynamics method, we simulate a widely studied electrolyte for sodium-ion batteries (SIBs): NaPF6 salt in ethylene carbonate solvent. The roles of temperature and salt concentration on the structural and dynamic properties of the electrolyte are studied. Temperature and salt concentration affect the molecular structure of the solution. The electrolyte tends to form contact-ion-pairs and multi-ion aggregates at higher temperature and concentration. An in-depth understanding of the effect of temperature and concentration on various properties of the electrolyte that define the rate and safety characteristics of the battery is required to rationally guide the design of electrolytes for SIBs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Tarascon, J.-M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Mater. Sustain. Energy 171–179 (2011) Tarascon, J.-M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Mater. Sustain. Energy 171–179 (2011)
2.
go back to reference Cresce, A.V., Russell, S.M., Borodin, O., Allen, J.A., Schroeder, M.A., Dai, M., Peng, J., Gobet, M.P., Greenbaum, S.G., Rogers, R.E., Xu, K.: Solvation behavior of carbonate-based electrolytes in sodium ion batteries. Phys. Chem. Chem. Phys. 19(1), 574–586 (2017)CrossRef Cresce, A.V., Russell, S.M., Borodin, O., Allen, J.A., Schroeder, M.A., Dai, M., Peng, J., Gobet, M.P., Greenbaum, S.G., Rogers, R.E., Xu, K.: Solvation behavior of carbonate-based electrolytes in sodium ion batteries. Phys. Chem. Chem. Phys. 19(1), 574–586 (2017)CrossRef
3.
go back to reference Ponrouch, A., Marchante, E., Courty, M., Tarascon, J.-M., Palacin, M.R.: In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 5(9), 8572–8583 (2012)CrossRef Ponrouch, A., Marchante, E., Courty, M., Tarascon, J.-M., Palacin, M.R.: In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 5(9), 8572–8583 (2012)CrossRef
4.
go back to reference Lutz, L., Corte, D.A.D., Tang, M., Salager, E., Deschamps, M., Grimaud, A., Johnson, L., Bruce, P.G., Tarascon, J.-M.: Role of electrolyte anions in the Na–O2 battery: implications for NaO2 solvation and the stability of the sodium solid electrolyte interphase in glyme ethers. Chem. Mater. 29(14), 6066–6075 (2017)CrossRef Lutz, L., Corte, D.A.D., Tang, M., Salager, E., Deschamps, M., Grimaud, A., Johnson, L., Bruce, P.G., Tarascon, J.-M.: Role of electrolyte anions in the Na–O2 battery: implications for NaO2 solvation and the stability of the sodium solid electrolyte interphase in glyme ethers. Chem. Mater. 29(14), 6066–6075 (2017)CrossRef
5.
go back to reference Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 4303–4418 (2004)CrossRef Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 4303–4418 (2004)CrossRef
6.
go back to reference Xu, K.: Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114(23), 11503–11618 (2014)CrossRef Xu, K.: Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114(23), 11503–11618 (2014)CrossRef
7.
go back to reference Ward, D., Jones, R., Templeton, J., Reyes, K., Kane, M.: Improved parameterization of an ethylene carbonate molecular dynamics model in Li-air batteries for accurate density and transition temperatures. ECS Trans. 61(27), 181–191 (2014)CrossRef Ward, D., Jones, R., Templeton, J., Reyes, K., Kane, M.: Improved parameterization of an ethylene carbonate molecular dynamics model in Li-air batteries for accurate density and transition temperatures. ECS Trans. 61(27), 181–191 (2014)CrossRef
8.
go back to reference Soetens, J.-C., Millot, C., Maigret, B.: Molecular dynamics simulation of Li+BF4− in ethylene carbonate, propylene carbonate, and dimethyl carbonate solvents. J. Phys. Chem. A 102(7), 1055–1061 (1998)CrossRef Soetens, J.-C., Millot, C., Maigret, B.: Molecular dynamics simulation of Li+BF4 in ethylene carbonate, propylene carbonate, and dimethyl carbonate solvents. J. Phys. Chem. A 102(7), 1055–1061 (1998)CrossRef
9.
go back to reference Jensen, K.P., Jorgensen, W.L.: Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions. J. Chem. Theory Comput. 2(6), 1499–1509 (2006)CrossRef Jensen, K.P., Jorgensen, W.L.: Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions. J. Chem. Theory Comput. 2(6), 1499–1509 (2006)CrossRef
10.
go back to reference Jorn, R., Kumar, R., Abraham, D.P., Voth, G.A.: Atomistic modeling of the electrode–electrolyte interface in Li-ion energy storage systems: electrolyte structuring. J. Phys. Chem. C 117(8), 3747–3761 (2013)CrossRef Jorn, R., Kumar, R., Abraham, D.P., Voth, G.A.: Atomistic modeling of the electrode–electrolyte interface in Li-ion energy storage systems: electrolyte structuring. J. Phys. Chem. C 117(8), 3747–3761 (2013)CrossRef
11.
go back to reference Kamath, G., Cutler, R.W., Deshmukh, S.A., Shakourian-Fard, M., Parrish, R., Huether, J., Butt, D.P., Xiong, H., Sankaranarayanan, S.: In silico based rank-order determination and experiments on nonaqueous electrolytes for sodium ion battery applications. J. Phys. Chem. C 118(25), 13406–13416 (2014)CrossRef Kamath, G., Cutler, R.W., Deshmukh, S.A., Shakourian-Fard, M., Parrish, R., Huether, J., Butt, D.P., Xiong, H., Sankaranarayanan, S.: In silico based rank-order determination and experiments on nonaqueous electrolytes for sodium ion battery applications. J. Phys. Chem. C 118(25), 13406–13416 (2014)CrossRef
12.
go back to reference Hassan, S.A.: Morphology of ion clusters in aqueous electrolytes. Phys. Rev. E 77(3), 031501 (2008)CrossRef Hassan, S.A.: Morphology of ion clusters in aqueous electrolytes. Phys. Rev. E 77(3), 031501 (2008)CrossRef
13.
go back to reference Mynam, M., Ravikumar, B., Rai, B.: Molecular dynamics study of propylene carbonate based concentrated electrolyte solutions for lithium ion batteries. J. Mol. Liq. 278, 97–104 (2019)CrossRef Mynam, M., Ravikumar, B., Rai, B.: Molecular dynamics study of propylene carbonate based concentrated electrolyte solutions for lithium ion batteries. J. Mol. Liq. 278, 97–104 (2019)CrossRef
14.
go back to reference Impey, R.W., Madden, P.A., McDonald, I.R.: Hydration and mobility of ions in solution. J. Phys. Chem. 87(25), 5071–5083 (1983)CrossRef Impey, R.W., Madden, P.A., McDonald, I.R.: Hydration and mobility of ions in solution. J. Phys. Chem. 87(25), 5071–5083 (1983)CrossRef
15.
go back to reference Yamada, Y., Yaegashi, M., Abe, T., Yamada, A.: A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chem. Commun. 49(95), 11194–11196 (2013)CrossRef Yamada, Y., Yaegashi, M., Abe, T., Yamada, A.: A superconcentrated ether electrolyte for fast-charging Li-ion batteries. Chem. Commun. 49(95), 11194–11196 (2013)CrossRef
16.
go back to reference Yamada, Y., Furukawa, K., Sodeyama, K., Kikuchi, K., Yaegashi, M., Tateyama, Y., Yamada, A.: Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 136(13), 5039–5046 (2014)CrossRef Yamada, Y., Furukawa, K., Sodeyama, K., Kikuchi, K., Yaegashi, M., Tateyama, Y., Yamada, A.: Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 136(13), 5039–5046 (2014)CrossRef
17.
go back to reference Ravikumar, B., Mynam, M., Rai, B.: Effect of salt concentration on properties of lithium ion battery electrolytes: a molecular dynamics study. J. Phys. Chem. C 122(15), 8173–8181 (2018)CrossRef Ravikumar, B., Mynam, M., Rai, B.: Effect of salt concentration on properties of lithium ion battery electrolytes: a molecular dynamics study. J. Phys. Chem. C 122(15), 8173–8181 (2018)CrossRef
Metadata
Title
Effect of Temperature and Salt Concentration on the Properties of Electrolyte for Sodium-Ion Batteries
Authors
Bharath Ravikumar
Surbhi Kumari
Mahesh Mynam
Beena Rai
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-5955-6_102