Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 9/2014

01-09-2014

Effect of TiO2 addition concentration on the wettability and intermetallic compounds growth of Sn3.0Ag0.5Cu–xTiO2 nano-composite solders

Authors: Yi Li, XiuChen Zhao, Ying Liu, Yuan Wang, Yong Wang

Published in: Journal of Materials Science: Materials in Electronics | Issue 9/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present study, addition of TiO2 nanoparticles with a concentration in the range from 0 to 0.75 wt% into eutectic Sn3.0Ag0.5Cu solders were prepared. The effect of TiO2 addition concentration on intermetallic compounds (IMC) growth in solder matrix, wettability of the composite solder, and interfacial IMC growth at composite solder/Cu interface were studied respectively. The microstructure images show that both IMC growth in solder matrix and interfacial IMC growth at solder/Cu interface were suppressed when TiO2 nanoparticles are added into the Sn3.0Ag0.5Cu solder system, meanwhile, wettability test results show wetting time reduction and wetting force enlargement with TiO2 nanoparticles addition concentration increasing. These results reveal that the added TiO2 nanoparticles in solders work as reinforce agent and enhance solder performance by reducing IMC dimension and improving wettability. However, TiO2 addition concentration is critical to the improvement extent. The matrix IMC size and interfacial IMC thickness were reduced significantly with the TiO2 addition concentration increasing in small addition range (0, 0.1 and 0.25 wt%). The most significant suppression appears when TiO2 concentration is about 0.25 wt%. Beyond this concentration, the matrix IMC size and interfacial IMC thickness increase, but still smaller than non-added Sn3.0Ag0.5Cu solder. Sn–Ag–Cu (SAC)–0.25TiO2 exhibits most obviously refined solder microstructure. The variation of wetting time and wetting force with the change of TiO2 concentration are similar. Addition of 0.25 wt% TiO2 shortens wetting time and strengthens wetting force most effectively. SAC–0.25TiO2 exhibit best wettability performance as well. The IMC variation consistent with wettability variation revels there is an optimal TiO2 addition concentration which is about 0.25 wt%. Both insufficient adding and excessive adding will weaken the TiO2 nanoparticle reinforcement extent. Based on the theory of adsorption and agglomeration, a mechanism of the TiO2 nanoparticle concentration effect and the optimal addition point was proposed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference K.N. Tu, Solder Joint Technology: Materials, Properties, and Reliability (Springer, New York, 2007) K.N. Tu, Solder Joint Technology: Materials, Properties, and Reliability (Springer, New York, 2007)
4.
go back to reference B.Y. Wu, Y.C. Chan, A. Middendorf, X. Gu, H.W. Zhong, J. Environ. Sci. 20, 1403–1408 (2008)CrossRef B.Y. Wu, Y.C. Chan, A. Middendorf, X. Gu, H.W. Zhong, J. Environ. Sci. 20, 1403–1408 (2008)CrossRef
6.
7.
go back to reference L.R. Garcia, W.R. Osorio, L.C. Peixoto, A. Garcia, J. Electron. Mater. 38, 2405–2414 (2009)CrossRef L.R. Garcia, W.R. Osorio, L.C. Peixoto, A. Garcia, J. Electron. Mater. 38, 2405–2414 (2009)CrossRef
8.
go back to reference G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, J. Luo, J. Mater. Sci. Mater. Electron. 21, 421–440 (2010) G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, J. Luo, J. Mater. Sci. Mater. Electron. 21, 421–440 (2010)
11.
go back to reference T. Fouzder, I. Shafiq, Y.C. Chan, A. Sharif, W.K.C. Yung, J. Alloy Compd. 509, 1885–1892 (2011)CrossRef T. Fouzder, I. Shafiq, Y.C. Chan, A. Sharif, W.K.C. Yung, J. Alloy Compd. 509, 1885–1892 (2011)CrossRef
12.
go back to reference K. Kanlayasiri, M. Mongkolwongrojn, T. Ariga, J. Alloy Compd. 485, 225–230 (2009)CrossRef K. Kanlayasiri, M. Mongkolwongrojn, T. Ariga, J. Alloy Compd. 485, 225–230 (2009)CrossRef
13.
15.
16.
go back to reference S.L. Tay, A.S.M.A. Haseeb, J. Mohd, Rafie. Solder. Surf. Mater. Technol. 23, 10–14 (2011)CrossRef S.L. Tay, A.S.M.A. Haseeb, J. Mohd, Rafie. Solder. Surf. Mater. Technol. 23, 10–14 (2011)CrossRef
17.
go back to reference A.K. Gain, Y.C. Chan, W.K.C. Yung, Microelectron. Reliab. 51, 2306–2313 (2011)CrossRef A.K. Gain, Y.C. Chan, W.K.C. Yung, Microelectron. Reliab. 51, 2306–2313 (2011)CrossRef
18.
go back to reference J.X. Wang, S.B. Xue, Z.J. Han et al., J. Alloy Compd. 467, 219–226 (2009)CrossRef J.X. Wang, S.B. Xue, Z.J. Han et al., J. Alloy Compd. 467, 219–226 (2009)CrossRef
19.
go back to reference L. Zhang, J.G. Han, C.W. He, Y.H. Guo, J. Mater. Sci. Mater. Electron. 23, 1950–1956 (2012) L. Zhang, J.G. Han, C.W. He, Y.H. Guo, J. Mater. Sci. Mater. Electron. 23, 1950–1956 (2012)
20.
go back to reference X.D. Liu, Y.D. Han, H.Y. Jing, J. Wei, L.Y. Xu, Mater. Sci. Eng. A 562, 25–32 (2013)CrossRef X.D. Liu, Y.D. Han, H.Y. Jing, J. Wei, L.Y. Xu, Mater. Sci. Eng. A 562, 25–32 (2013)CrossRef
21.
go back to reference A.K. Gain, Y.C. Chan, W.K.C. Yung, Microelectron. Reliab. 51, 975–984 (2011)CrossRef A.K. Gain, Y.C. Chan, W.K.C. Yung, Microelectron. Reliab. 51, 975–984 (2011)CrossRef
22.
go back to reference S.Y. Chang, C.C. Jain, T.H. Chuang, L.P. Feng, L.C. Tsao, Mater. Des. 32, 4720–4727 (2011)CrossRef S.Y. Chang, C.C. Jain, T.H. Chuang, L.P. Feng, L.C. Tsao, Mater. Des. 32, 4720–4727 (2011)CrossRef
23.
go back to reference J.C. Leong, L.C. Tsao, C.J. Fang, C.P. Chu, J. Mater. Sci. Mater. Electron. 22, 1443–1449 (2011) J.C. Leong, L.C. Tsao, C.J. Fang, C.P. Chu, J. Mater. Sci. Mater. Electron. 22, 1443–1449 (2011)
24.
go back to reference L.C. Tsao, M.W. Wu, S.Y. Chang, J. Mater. Sci. Mater. Electron. 23, 681–687 (2012) L.C. Tsao, M.W. Wu, S.Y. Chang, J. Mater. Sci. Mater. Electron. 23, 681–687 (2012)
25.
26.
27.
go back to reference L.C. Tsao, C.H. Huang, C.H. Chung, R.S. Chen, Mater. Sci. Eng. A 545, 194–200 (2012)CrossRef L.C. Tsao, C.H. Huang, C.H. Chung, R.S. Chen, Mater. Sci. Eng. A 545, 194–200 (2012)CrossRef
28.
go back to reference W.D. Callister, D.G. Rethwisch, Fundamentals of Materials Science and Engineering: An Integrated Approach (Wiley, New York, 2004) W.D. Callister, D.G. Rethwisch, Fundamentals of Materials Science and Engineering: An Integrated Approach (Wiley, New York, 2004)
29.
go back to reference A.K. Gain, T. Fouzder, Y.C. Chan, A. Sharif, W.K.C. Yung, J. Alloy Compd. 489, 678–684 (2010)CrossRef A.K. Gain, T. Fouzder, Y.C. Chan, A. Sharif, W.K.C. Yung, J. Alloy Compd. 489, 678–684 (2010)CrossRef
31.
33.
go back to reference D.Q. Yu, L. Wang, C.M.L. Wu, C.M.T. Law, J. Alloy Compd. 389, 153–158 (2005)CrossRef D.Q. Yu, L. Wang, C.M.L. Wu, C.M.T. Law, J. Alloy Compd. 389, 153–158 (2005)CrossRef
34.
go back to reference D.Q. Yu, C.M.L. Wu, C.M.T. Law, L. Wang, J.K.L. Lai, J. Alloy Compd. 392, 192–199 (2005)CrossRef D.Q. Yu, C.M.L. Wu, C.M.T. Law, L. Wang, J.K.L. Lai, J. Alloy Compd. 392, 192–199 (2005)CrossRef
35.
go back to reference X. Liu, M. Huang, Y. Zhao, C.M.L. Wu, L. Wang, J. Alloy Compd. 492, 433–438 (2010)CrossRef X. Liu, M. Huang, Y. Zhao, C.M.L. Wu, L. Wang, J. Alloy Compd. 492, 433–438 (2010)CrossRef
37.
go back to reference K.K. Nanda, A. Maisels, F.E. Kruis, H. Fissan, S. Stappert, Phys. Rev. Lett. 91, 106102 (2003)CrossRef K.K. Nanda, A. Maisels, F.E. Kruis, H. Fissan, S. Stappert, Phys. Rev. Lett. 91, 106102 (2003)CrossRef
38.
Metadata
Title
Effect of TiO2 addition concentration on the wettability and intermetallic compounds growth of Sn3.0Ag0.5Cu–xTiO2 nano-composite solders
Authors
Yi Li
XiuChen Zhao
Ying Liu
Yuan Wang
Yong Wang
Publication date
01-09-2014
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 9/2014
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-014-2094-9

Other articles of this Issue 9/2014

Journal of Materials Science: Materials in Electronics 9/2014 Go to the issue