Skip to main content
Top
Published in: Experimental Mechanics 8/2013

01-10-2013

Effect of Varying Test Parameters on Elastic–plastic Properties Extracted by Nanoindentation Tests

Authors: L. Ladani, E. Harvey, S. F. Choudhury, C. R. Taylor

Published in: Experimental Mechanics | Issue 8/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A systematic experiment was performed in an effort to investigate how the levels of certain test parameters affect the values of elastic modulus, hardness, yield stress, and strain hardening constant obtained using nanoindentation test. Maximum applied load, loading (unloading) rate, and hold time at maximum load were varied at three levels. The effects of these testing parameters were investigated through a three-level, full factorial design of experiment. The experiments were conducted on ultrafine Al-Mg specimens that were mechanically extruded. Both longitudinal and transverse extrusion directions were examined to investigate effects of anisotropy on mechanical properties and evaluate the persistence of observed variations due to test parameters on different materials orientations. An indentation size effect (ISE) was observed demonstrating that maximum load—and thereby maximum indentation depth—can have a significant effect on values of hardness and elastic modulus. Hardness values decreased with higher loading rates, and higher rates of unloading resulted in higher values of elastic modulus (5–10 GPa increases). Strain-hardening exponent showed a decreasing trend with increasing loading rate while yield stress exhibited a consistent correlation to hardness across all studied parameters. The material exhibited very little creep during the hold period, and values of the calculated properties were not significantly altered by varying the length of the hold time. Anisotropy effect was observed, particularly in the values of yield strength. This is attributed to the preferred grain orientation due to extrusion.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fischer-Cripps, Anthony C (2002) Nanoindentation. Springer-Verlag New York, Inc., New YorkCrossRef Fischer-Cripps, Anthony C (2002) Nanoindentation. Springer-Verlag New York, Inc., New YorkCrossRef
2.
go back to reference Doerner MF, Nix WD (1986) A method for interpreting the data from depth-sensing instruments. J Mater Res 1:601–609CrossRef Doerner MF, Nix WD (1986) A method for interpreting the data from depth-sensing instruments. J Mater Res 1:601–609CrossRef
3.
go back to reference Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRef Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583CrossRef
4.
go back to reference Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh A (2001) Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater 49:3899–3918CrossRef Dao M, Chollacoop N, Van Vliet KJ, Venkatesh TA, Suresh A (2001) Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater 49:3899–3918CrossRef
5.
go back to reference Huang Y, Liu X, Zhou Y, Ma Z, Lu C (2011) Mathematical analysis on the uniqueness of reverse algorithm for measuring elastic–plastic properties by sharp indentation. J Mater Sci Technol 27:577–584CrossRef Huang Y, Liu X, Zhou Y, Ma Z, Lu C (2011) Mathematical analysis on the uniqueness of reverse algorithm for measuring elastic–plastic properties by sharp indentation. J Mater Sci Technol 27:577–584CrossRef
6.
go back to reference Ogasawara N, Chiba N, Chen X (2006) Measuring the plastic properties of bulk materials by single indentation test. Scr Mater 54:65–70CrossRef Ogasawara N, Chiba N, Chen X (2006) Measuring the plastic properties of bulk materials by single indentation test. Scr Mater 54:65–70CrossRef
7.
go back to reference Das CR, Dhara S, Jeng Y, Tsai C, Hsu HC, Raj B, Bhaduri AK, Albert SK, Tyagi AK, Chen LC, Chen KH (2010) Direct observation of amophization in load rate dependent nanoindentation studies of crystalline Si. Appl Phys Lett 96:253113CrossRef Das CR, Dhara S, Jeng Y, Tsai C, Hsu HC, Raj B, Bhaduri AK, Albert SK, Tyagi AK, Chen LC, Chen KH (2010) Direct observation of amophization in load rate dependent nanoindentation studies of crystalline Si. Appl Phys Lett 96:253113CrossRef
8.
go back to reference Wu Z, Baker TA, Ovaert TC, Niebur GL (2011) The effect of holding time on nanoindentation measurements of creep in bone. J Biomech 44:1066–1072CrossRef Wu Z, Baker TA, Ovaert TC, Niebur GL (2011) The effect of holding time on nanoindentation measurements of creep in bone. J Biomech 44:1066–1072CrossRef
9.
go back to reference Chudoba T, Richter F (2001) Investigation of creep behavior under load during indentation experiments and its influence on hardness and modulus results. Surf Coat Technol 148:191–198CrossRef Chudoba T, Richter F (2001) Investigation of creep behavior under load during indentation experiments and its influence on hardness and modulus results. Surf Coat Technol 148:191–198CrossRef
10.
go back to reference Goodall R, Clyne TW (2006) A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater 54:5489–5499CrossRef Goodall R, Clyne TW (2006) A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Mater 54:5489–5499CrossRef
11.
go back to reference Nohava J, Randall NX, Conté N (2009) Novel ultra nanoindentation method with extremely low thermal drift: principle and experimental results. J Mater Res 24:873–882CrossRef Nohava J, Randall NX, Conté N (2009) Novel ultra nanoindentation method with extremely low thermal drift: principle and experimental results. J Mater Res 24:873–882CrossRef
12.
go back to reference Mayo MJ, Siegel RW, Narayanasamy A, Nix WD (1990) Mechanical properties of nanophase TiO2 as determined by nanoindentation. J Mater Res 5:1073–1082CrossRef Mayo MJ, Siegel RW, Narayanasamy A, Nix WD (1990) Mechanical properties of nanophase TiO2 as determined by nanoindentation. J Mater Res 5:1073–1082CrossRef
13.
go back to reference Burgess T, Laws KJ, Ferry M (2008) Effect of loading rate on the serrated flow of bulk metallic glass during nanoindentation. Acta Mater 56:4829–4835CrossRef Burgess T, Laws KJ, Ferry M (2008) Effect of loading rate on the serrated flow of bulk metallic glass during nanoindentation. Acta Mater 56:4829–4835CrossRef
14.
go back to reference Amini A, He Y, Sun Q (2011) Loading rate dependency of maximum nanoindentation in nano-grained NiTi shape memory alloy. Mater Lett 65:464–466CrossRef Amini A, He Y, Sun Q (2011) Loading rate dependency of maximum nanoindentation in nano-grained NiTi shape memory alloy. Mater Lett 65:464–466CrossRef
15.
go back to reference Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46:411–425CrossRefMATH Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46:411–425CrossRefMATH
16.
go back to reference Mayo MJ, Nix WD (1988) A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 wt% Pb. Acta Metall 36:2183–2192CrossRef Mayo MJ, Nix WD (1988) A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 wt% Pb. Acta Metall 36:2183–2192CrossRef
17.
go back to reference Maier V, Durst K, Mueller J, Backes B, Höppel HW, Göken M (2011) Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J Mater Res 26:1421–1430CrossRef Maier V, Durst K, Mueller J, Backes B, Höppel HW, Göken M (2011) Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J Mater Res 26:1421–1430CrossRef
19.
go back to reference Manika I, Maniks J (2006) Size effects in micro- and nanoscale indentation. Acta Mater 56:2049–2056CrossRef Manika I, Maniks J (2006) Size effects in micro- and nanoscale indentation. Acta Mater 56:2049–2056CrossRef
20.
go back to reference Zong Z, Lou J, Adewoye OO, Elmustafa AA, Hammad F, Soboyejo WO (2006) Indentation size effects in the nano- and micro-hardness of FCC single crystal metals. Mater Sci Eng, A 434:178–187CrossRef Zong Z, Lou J, Adewoye OO, Elmustafa AA, Hammad F, Soboyejo WO (2006) Indentation size effects in the nano- and micro-hardness of FCC single crystal metals. Mater Sci Eng, A 434:178–187CrossRef
21.
go back to reference Elmustafa AA, Eastman JA, Rittner MN, Weertman JR, Stone DS (2000) Indentation size effect: large grained aluminum versus nanocrystalline aluminum-zirconium alloys. Scr Mater 43:951–955CrossRef Elmustafa AA, Eastman JA, Rittner MN, Weertman JR, Stone DS (2000) Indentation size effect: large grained aluminum versus nanocrystalline aluminum-zirconium alloys. Scr Mater 43:951–955CrossRef
22.
go back to reference Durst K, Bakes B, Goken M (2005) Indentation size effect in metallic materials: correcting for the size of the plastic zone. Scr Mater 52:1093–1097CrossRef Durst K, Bakes B, Goken M (2005) Indentation size effect in metallic materials: correcting for the size of the plastic zone. Scr Mater 52:1093–1097CrossRef
23.
go back to reference Han L, Hu H, Northwood DO, and Li N (2008) “Microstructure and nanoscale mechanical behavior of Mg-Al and Mg-Al-Ca Alloys” Mater Sci Eng A 473: 16–27 Han L, Hu H, Northwood DO, and Li N (2008) “Microstructure and nanoscale mechanical behavior of Mg-Al and Mg-Al-Ca Alloys” Mater Sci Eng A 473: 16–27
24.
go back to reference Li J, Li F, Xue F, Cai J, and Chen B (2012) “Micromechanical behavior study of forged 7050 aluminum alloy by microindentation” Mater Des 37: 491–499 Li J, Li F, Xue F, Cai J, and Chen B (2012) “Micromechanical behavior study of forged 7050 aluminum alloy by microindentation” Mater Des 37: 491–499
25.
go back to reference Xue F, Li F, Cai J, Yuan Z, Chen B, Liu T (2012) Characterization of the elasto-plastic properties of 0Cr12Mn5Ni4Mo3Al steel by microindentation. Sustain Mater Des Appl 36:81–87 Xue F, Li F, Cai J, Yuan Z, Chen B, Liu T (2012) Characterization of the elasto-plastic properties of 0Cr12Mn5Ni4Mo3Al steel by microindentation. Sustain Mater Des Appl 36:81–87
26.
go back to reference Bolshakov A and Pharr G (1998) “Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques”, J Mater Res 13(4): 1049–1058 Bolshakov A and Pharr G (1998) “Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques”, J Mater Res 13(4): 1049–1058
27.
go back to reference Giannakopoulos A and Suresh S (1999) “Determination Of elastoplastic properties by instrumented sharp indentation” Scr Mater 40(10): 1191–1198 Giannakopoulos A and Suresh S (1999) “Determination Of elastoplastic properties by instrumented sharp indentation” Scr Mater 40(10): 1191–1198
28.
go back to reference Tabor D (1951) The hardness of metals. Oxford University Press Inc., New York Tabor D (1951) The hardness of metals. Oxford University Press Inc., New York
29.
go back to reference Ahn B, Mitra R, Lavernia EJ, Nutt SR (2010) Effect of grain size on strain rate sensitivity of cryomilled Al-Mg alloy. J Mater Sci 45:4790–4795CrossRef Ahn B, Mitra R, Lavernia EJ, Nutt SR (2010) Effect of grain size on strain rate sensitivity of cryomilled Al-Mg alloy. J Mater Sci 45:4790–4795CrossRef
30.
go back to reference Ahn B, Mitra R, Hodge AM, Lavernia EJ, Nutt SR (2008) Strain rate sensitivity studies of cryomilled Al alloy performed by nanoindentation. Mater Sci Forum 584–586:221–226CrossRef Ahn B, Mitra R, Hodge AM, Lavernia EJ, Nutt SR (2008) Strain rate sensitivity studies of cryomilled Al alloy performed by nanoindentation. Mater Sci Forum 584–586:221–226CrossRef
31.
go back to reference Vlassak JJ, Nix WD (1993) “Indentation modulus of elastically anisotropic half spaces,” Phil Mag A 67:1045–1056 Vlassak JJ, Nix WD (1993) “Indentation modulus of elastically anisotropic half spaces,” Phil Mag A 67:1045–1056
32.
go back to reference Vlassak JJ, Nix WD (1994) “Measuring the elastic properties of anisotropic materials by means of indentation experiments. J Mech Phys Solids 42:1223CrossRef Vlassak JJ, Nix WD (1994) “Measuring the elastic properties of anisotropic materials by means of indentation experiments. J Mech Phys Solids 42:1223CrossRef
33.
go back to reference Han B, Lee Z, Witkin D, Nutt S, and Lavernia E (2005) “Deformation Behavior of Bimodal Nanostructured 5083 Al Alloys” Metall Mater Trans A 36: 957 Han B, Lee Z, Witkin D, Nutt S, and Lavernia E (2005) “Deformation Behavior of Bimodal Nanostructured 5083 Al Alloys” Metall Mater Trans A 36: 957
34.
go back to reference Joshi S, Ramesh K, Han B and Lavernia E (2006) “Modeling the Constitutive Response of Bimodal Metals”, Metall Mater Trans A 37: 2397–2404 Joshi S, Ramesh K, Han B and Lavernia E (2006) “Modeling the Constitutive Response of Bimodal Metals”, Metall Mater Trans A 37: 2397–2404
35.
go back to reference Magee A, Ladani L, Topping T and Lavernia E (2012) “Effects of tensile test parameters on the mechanical properties of a bimodal Al–Mg alloy,” Acta Mater 60: 5838–5849 Magee A, Ladani L, Topping T and Lavernia E (2012) “Effects of tensile test parameters on the mechanical properties of a bimodal Al–Mg alloy,” Acta Mater 60: 5838–5849
36.
go back to reference Fjeldly A, Roven HJ (1996) Observation and calculation of mechanical anisotropy and plastic flow of AlMgZn extrusion. Acta Mater 44(9):3497–3504CrossRef Fjeldly A, Roven HJ (1996) Observation and calculation of mechanical anisotropy and plastic flow of AlMgZn extrusion. Acta Mater 44(9):3497–3504CrossRef
Metadata
Title
Effect of Varying Test Parameters on Elastic–plastic Properties Extracted by Nanoindentation Tests
Authors
L. Ladani
E. Harvey
S. F. Choudhury
C. R. Taylor
Publication date
01-10-2013
Publisher
Springer US
Published in
Experimental Mechanics / Issue 8/2013
Print ISSN: 0014-4851
Electronic ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-013-9732-7

Other articles of this Issue 8/2013

Experimental Mechanics 8/2013 Go to the issue

Premium Partners