Skip to main content
Top
Published in: Metallurgical and Materials Transactions B 5/2018

10-07-2018

Effect of Weld Consumable Conditioning on the Diffusible Hydrogen and Subsequent Residual Stress and Flexural Strength of Multipass Welded P91 Steels

Authors: Chandan Pandey, M. M. Mahapatra, Pradeep Kumar, N. Saini

Published in: Metallurgical and Materials Transactions B | Issue 5/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

P91 steel weld joint was prepared using the shielded metal arc welding process and four different conditions of weld consumable that provide the different levels of diffusible hydrogen in deposited metal. In the present research, the effects of diffusible hydrogen content on the flexural strength, lower critical stress, and tensile strength of P91 steel welds were also determined with respect to different electrode conditions. To investigate the effect of diffusible hydrogen on multipass welding, top and root side flexural tests were performed. The residual stresses (axial stress and transverse stress) were also measured using the blind hole drilling method for different conditions of welding consumable. The peak value of residual stresses was measured at the center of the weld fusion zone. The maximum value of transverse stress was measured to be 355 MPa for case II (6.21 mL/100 g of diffusible hydrogen), while the maximum axial stress was about 218 MPa for case IV (12.43 mL/100 g of diffusible hydrogen). A three-dimensional finite element simulation was also performed to predict the residual stress distribution and thermal profile along the welded joint. The experimentally determined residual stresses correlated well with the numerically estimated residual stresses. The diffusible hydrogen content was not observed to have any significant effect on the residual stresses. The corrected residual stress values were also predicted by considering the plasticity-induced error. However, the flexural performance of the welded joint was affected by the diffusible hydrogen content. The top and root flexural strength was measured to be optimum for the low level of diffusible hydrogen content, and the values decreased with an increase in diffusible hydrogen content.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Aghajani, C. Somsen, and G. Eggeler: Acta Mater., 2009, vol. 57, pp. 5093–5106.CrossRef A. Aghajani, C. Somsen, and G. Eggeler: Acta Mater., 2009, vol. 57, pp. 5093–5106.CrossRef
2.
go back to reference C. Pandey and M.M. Mahapatra: J. Mater. Eng. Performance, 2016, vol. 25, pp. 2195–2210.CrossRef C. Pandey and M.M. Mahapatra: J. Mater. Eng. Performance, 2016, vol. 25, pp. 2195–2210.CrossRef
3.
go back to reference C. Pandey, M.M. Mahapatra, P. Kumar, R.S. Vidyrathy, and A. Srivastava: Mater. Sci. Eng. A, 2017, vol. 695, pp. 291–301.CrossRef C. Pandey, M.M. Mahapatra, P. Kumar, R.S. Vidyrathy, and A. Srivastava: Mater. Sci. Eng. A, 2017, vol. 695, pp. 291–301.CrossRef
4.
go back to reference M. Dewitte and C. Coussement: Mater. High Temp., 1991, vol. 9, pp. 178–84.CrossRef M. Dewitte and C. Coussement: Mater. High Temp., 1991, vol. 9, pp. 178–84.CrossRef
5.
go back to reference I. Fedorova, A. Kipelova, A. Belyakov, and R. Kaibyshev: Metall. Mater. Trans. A, 2018, vol. 49A. I. Fedorova, A. Kipelova, A. Belyakov, and R. Kaibyshev: Metall. Mater. Trans. A, 2018, vol. 49A.
6.
go back to reference B. Silwal, L. Li, A. Deceuster, and B. Griffiths: Weld. Res., 2013, vol. 92, pp. 80s–87s. B. Silwal, L. Li, A. Deceuster, and B. Griffiths: Weld. Res., 2013, vol. 92, pp. 80s–87s.
7.
go back to reference X. Li, M.T. Cabrillat, and Y. Lejeail: Study Modif. 9Cr-lMo Welds, 2006, vol. 43. X. Li, M.T. Cabrillat, and Y. Lejeail: Study Modif. 9Cr-lMo Welds, 2006, vol. 43.
8.
go back to reference G.A. Webster and A.N. Ezeilo: Int. J. Fatigue, 2001, vol. 23, pp. 375–83.CrossRef G.A. Webster and A.N. Ezeilo: Int. J. Fatigue, 2001, vol. 23, pp. 375–83.CrossRef
9.
go back to reference P. Dong and P. Dong: Sci. Technol. Weld. Join., 2004, vol. 10, pp. 389–98.CrossRef P. Dong and P. Dong: Sci. Technol. Weld. Join., 2004, vol. 10, pp. 389–98.CrossRef
10.
go back to reference P.G. Kumar and K. Yu-ichi: Trans. JWRI, 2013, vol. 42, pp. 39–62. P.G. Kumar and K. Yu-ichi: Trans. JWRI, 2013, vol. 42, pp. 39–62.
11.
go back to reference C. Pandey, M.M. Mahapatra, and P. Kumar: Arch. Civil Mech. Eng., 2018, vol. 18, pp. 1000–11.CrossRef C. Pandey, M.M. Mahapatra, and P. Kumar: Arch. Civil Mech. Eng., 2018, vol. 18, pp. 1000–11.CrossRef
12.
go back to reference A.H. Yaghi, T.H. Hyde, A.A. Becker, and W. Sun: IMechE: J. Strain Analysis, 2008, vol. 43, pp. 275–93. A.H. Yaghi, T.H. Hyde, A.A. Becker, and W. Sun: IMechE: J. Strain Analysis, 2008, vol. 43, pp. 275–93.
13.
go back to reference M. Zubairuddin, S.K. Albert, M. Vasudevan, S. Mahadevan, V. Chaudhri, and V.K. Suri: Mater. Manufact. Processes, 2016, vol. 31, pp. 366–71.CrossRef M. Zubairuddin, S.K. Albert, M. Vasudevan, S. Mahadevan, V. Chaudhri, and V.K. Suri: Mater. Manufact. Processes, 2016, vol. 31, pp. 366–71.CrossRef
14.
15.
go back to reference H. Murakawa, B. Miloslav, V. Adan, R. Sherif, D. Cartin, D. David, and N. Kamran: Trans. JWRI, 2008, vol. 37, pp. 75–80. H. Murakawa, B. Miloslav, V. Adan, R. Sherif, D. Cartin, D. David, and N. Kamran: Trans. JWRI, 2008, vol. 37, pp. 75–80.
16.
go back to reference S. Paddea, J.A. Francis, A.M. Paradowska, P.J. Bouchard, and I.A. Shibli: Mater. Sci. Eng. A, 2012, vol. 534, pp. 663–72.CrossRef S. Paddea, J.A. Francis, A.M. Paradowska, P.J. Bouchard, and I.A. Shibli: Mater. Sci. Eng. A, 2012, vol. 534, pp. 663–72.CrossRef
17.
go back to reference J.A. Francis, W. Mazur, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2006, vol. 22, pp. 1387–95.CrossRef J.A. Francis, W. Mazur, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2006, vol. 22, pp. 1387–95.CrossRef
18.
go back to reference K.A. Venkata, S. Kumar, H.C. Dey, D.J. Smith, and P.J. Bouchard: Proc. Eng., 2014, vol. 86, pp. 223–33.CrossRef K.A. Venkata, S. Kumar, H.C. Dey, D.J. Smith, and P.J. Bouchard: Proc. Eng., 2014, vol. 86, pp. 223–33.CrossRef
19.
go back to reference T.C. Chuvas, P.S.P. Garcia, J.M. Pardal, and P.C. da Fonseca: Mater. Res., 2015, vol. 18, pp. 614–21.CrossRef T.C. Chuvas, P.S.P. Garcia, J.M. Pardal, and P.C. da Fonseca: Mater. Res., 2015, vol. 18, pp. 614–21.CrossRef
20.
go back to reference S. Kulkarni, P.K. Ghosh, and S. Ray: ISIJ Int., 2008, vol. 48, pp. 1560–69.CrossRef S. Kulkarni, P.K. Ghosh, and S. Ray: ISIJ Int., 2008, vol. 48, pp. 1560–69.CrossRef
21.
go back to reference S. Kim, J. Kim, and W. Lee: J. Mater. Process. Technol., 2009, vol. 209, pp. 3905–13.CrossRef S. Kim, J. Kim, and W. Lee: J. Mater. Process. Technol., 2009, vol. 209, pp. 3905–13.CrossRef
22.
go back to reference Y. Sattari-Far and I. Javadi: Int. J. Press. Vess. Pip., 2008, vol. 85, pp. 265–74.CrossRef Y. Sattari-Far and I. Javadi: Int. J. Press. Vess. Pip., 2008, vol. 85, pp. 265–74.CrossRef
23.
24.
go back to reference N. Saini, C. Pandey and M.M. Mahapatra: Int. J. Hydrog. Energy, 2017, 42, 17328-38.CrossRef N. Saini, C. Pandey and M.M. Mahapatra: Int. J. Hydrog. Energy, 2017, 42, 17328-38.CrossRef
25.
go back to reference C. Pandey, M.M. Mahapatra, P. Kumar, and N. Saini: J. Eng. Mater. Technol., 2017, vol. 139, pp. 1–11.CrossRef C. Pandey, M.M. Mahapatra, P. Kumar, and N. Saini: J. Eng. Mater. Technol., 2017, vol. 139, pp. 1–11.CrossRef
26.
go back to reference S.K. Albert, V. Ramasubbu, S.I.S. Raj, and A.K. Bhaduri: Weld. World, 2011, vol. 55, pp. 66–74.CrossRef S.K. Albert, V. Ramasubbu, S.I.S. Raj, and A.K. Bhaduri: Weld. World, 2011, vol. 55, pp. 66–74.CrossRef
28.
go back to reference C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, and A. Srivastava: J. Manufact. Processes, 2017, vol. 28, pp. 220–34.CrossRef C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, and A. Srivastava: J. Manufact. Processes, 2017, vol. 28, pp. 220–34.CrossRef
30.
go back to reference J.N. Dupont and A.R. Marder: Weld. Res. Suppl., 1995, vol. 74, pp. 406–16. J.N. Dupont and A.R. Marder: Weld. Res. Suppl., 1995, vol. 74, pp. 406–16.
31.
go back to reference C. Pandey, A. Giri, and M.M. Mahapatra: Int. J. Steel Struct., 2016, vol. 16, pp. 333–45.CrossRef C. Pandey, A. Giri, and M.M. Mahapatra: Int. J. Steel Struct., 2016, vol. 16, pp. 333–45.CrossRef
32.
go back to reference C. Pandey, N. Saini, M.M. Mahapatra, and P. Kumar: Int. J. Hydrogen Energy, 2016, vol. 41, pp. 17695–17712.CrossRef C. Pandey, N. Saini, M.M. Mahapatra, and P. Kumar: Int. J. Hydrogen Energy, 2016, vol. 41, pp. 17695–17712.CrossRef
33.
go back to reference A. Giri, C. Pandey, M.M. Mahapatra, K. Sharma, and P.K. Singh: Meas, 2015, vol. 65, pp. 41–49.CrossRef A. Giri, C. Pandey, M.M. Mahapatra, K. Sharma, and P.K. Singh: Meas, 2015, vol. 65, pp. 41–49.CrossRef
34.
go back to reference A.H. Yaghi, T.H. Hyde, A.A. Becker, W. Sun, G. Hilson, S. Simandjuntak, P.E.J. Flewitt, and D.J. Smith: J. Press. Vess. Technol., 2010, vol. 132, pp. 1–10.CrossRef A.H. Yaghi, T.H. Hyde, A.A. Becker, W. Sun, G. Hilson, S. Simandjuntak, P.E.J. Flewitt, and D.J. Smith: J. Press. Vess. Technol., 2010, vol. 132, pp. 1–10.CrossRef
35.
go back to reference L.X. Jang, X.F. Peng, and B.X. Wang: Int. J. Heat Mass Transfer, 2001, vol. 44, pp. 4465–73.CrossRef L.X. Jang, X.F. Peng, and B.X. Wang: Int. J. Heat Mass Transfer, 2001, vol. 44, pp. 4465–73.CrossRef
36.
go back to reference J. Goldak: Metall. Trans. A, 1986, vol. 17A, pp. 17–26. J. Goldak: Metall. Trans. A, 1986, vol. 17A, pp. 17–26.
37.
go back to reference B. Brickstad and B.L. Josefson: Int. J. Press. Vess. Pip., 1998, vol. 75, pp. 11–25.CrossRef B. Brickstad and B.L. Josefson: Int. J. Press. Vess. Pip., 1998, vol. 75, pp. 11–25.CrossRef
38.
go back to reference C. Liu, J.X. Zhang, and C.B. Xue: Fus. Eng. Design, 2011, vol. 86, pp. 288–95.CrossRef C. Liu, J.X. Zhang, and C.B. Xue: Fus. Eng. Design, 2011, vol. 86, pp. 288–95.CrossRef
39.
go back to reference C. Pandey, N. Saini, M.M. Mahapatra, and P. Kumar: Eng. Fail. Analysis, 2016, vol. 71, pp. 131–47.CrossRef C. Pandey, N. Saini, M.M. Mahapatra, and P. Kumar: Eng. Fail. Analysis, 2016, vol. 71, pp. 131–47.CrossRef
40.
go back to reference C. Pandey, A. Giri, M.M. Mahapatra, and P. Kumar: Met. Mater. Int., 2017, vol. 23, pp. 148–62.CrossRef C. Pandey, A. Giri, M.M. Mahapatra, and P. Kumar: Met. Mater. Int., 2017, vol. 23, pp. 148–62.CrossRef
41.
go back to reference Y. Wang, R. Kannan, and L. Li: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 5680–84.CrossRef Y. Wang, R. Kannan, and L. Li: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 5680–84.CrossRef
42.
go back to reference C. Pandey and M.M. Mahapatra: J. Mater. Eng. Perform., 2016, vol. 25, pp. 2761–75.CrossRef C. Pandey and M.M. Mahapatra: J. Mater. Eng. Perform., 2016, vol. 25, pp. 2761–75.CrossRef
43.
go back to reference M.M. Mahapatra, G.L. Datta, B. Pradhan, and N.R. Mandal: Int. J. Press. Vess. Pip., 2006, vol. 83, pp. 721–29.CrossRef M.M. Mahapatra, G.L. Datta, B. Pradhan, and N.R. Mandal: Int. J. Press. Vess. Pip., 2006, vol. 83, pp. 721–29.CrossRef
44.
go back to reference N. Guo, Z. Yang, M. Wang, X. Yuan, and J. Feng: Strength Mater., 2015, vol. 47, pp. 12–18.CrossRef N. Guo, Z. Yang, M. Wang, X. Yuan, and J. Feng: Strength Mater., 2015, vol. 47, pp. 12–18.CrossRef
45.
go back to reference H.L. Li, D. Liu, Y.T. Yan, N. Guo, and J.C. Feng: J. Mater. Process. Technol., 2016, vol. 238, pp. 423–30.CrossRef H.L. Li, D. Liu, Y.T. Yan, N. Guo, and J.C. Feng: J. Mater. Process. Technol., 2016, vol. 238, pp. 423–30.CrossRef
47.
go back to reference B.K. Choudhary and E. Isaac Samuel: J. Nucl. Mater., 2011, vol. 412, pp. 82–89.CrossRef B.K. Choudhary and E. Isaac Samuel: J. Nucl. Mater., 2011, vol. 412, pp. 82–89.CrossRef
48.
go back to reference S. Sathyanarayanan, A. Moitra, K.G. Samuel, G. Sasikala, S.K. Ray, and V. Singh: Mater. Sci. Eng. A, 2008, vol. 488, pp. 519–28.CrossRef S. Sathyanarayanan, A. Moitra, K.G. Samuel, G. Sasikala, S.K. Ray, and V. Singh: Mater. Sci. Eng. A, 2008, vol. 488, pp. 519–28.CrossRef
Metadata
Title
Effect of Weld Consumable Conditioning on the Diffusible Hydrogen and Subsequent Residual Stress and Flexural Strength of Multipass Welded P91 Steels
Authors
Chandan Pandey
M. M. Mahapatra
Pradeep Kumar
N. Saini
Publication date
10-07-2018
Publisher
Springer US
Published in
Metallurgical and Materials Transactions B / Issue 5/2018
Print ISSN: 1073-5615
Electronic ISSN: 1543-1916
DOI
https://doi.org/10.1007/s11663-018-1314-8

Other articles of this Issue 5/2018

Metallurgical and Materials Transactions B 5/2018 Go to the issue

Premium Partners