Skip to main content
Top
Published in: Wireless Networks 3/2020

21-06-2019

Effective capacity optimization for cognitive radio networks under primary QoS provisioning

Authors: Mai A. Abdel-Malek, Karim G. Seddik, Tamer ElBatt, Yahya Mohasseb

Published in: Wireless Networks | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cognitive radios have emerged as a key enabler for opportunistic spectrum access, in order to tackle the wireless spectrum scarcity and under utilization problems over the past two decades. In this paper, we aim to enhance the secondary user (SU) performance while maintaining the desired average packet delay for the primary user (PU). In particular, we investigate the trade-off between delay-constrained primary and secondary users in cog- nitive radio systems. In the first part of this work, we use the hard-sensing scheme to make a decision on the PU activity and maximize the SU effective capacity subject to an average PU delay constraint. Second, we propose a soft-sensing scheme by dividing the PU energy interval where the PU is decided to be idle into multiple decision. We also maximize the SU effective capacity subject to an average primary user delay constraint; then, we present three modifications for the proposed soft-sensing scheme to allow for low complexity implementation that is comparable to the complexity of the hard-sensing scheme, but with better performance. The numerical results reveal interesting insights comparing our soft sensing to the hard-sensing models in terms of the optimal performance obtained from our optimization solution compared to the unconstrained PU delay baseline system studied earlier in the literature. For instance, the hard sensing system in Akin and Gursoy (IEEE Trans Wirel Commun 9(11):3354–3364, 2010) and Abdel-Malek et al. (CrownCom 156:30–42, 2015) yields a SU effective capacity of only 50 % of the ideal, perfect sensing system. On the other hand, we show that the soft sensing system yields almost 87 % of the perfect sensing performance (at a primary user arrival rate of \(\lambda _p = 0.1\)), which further increases for a larger number of decision sub-intervals.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Force, S. (2002). Spectrum policy task force report. Federal Communications Commission ET Docket, 135(02) Force, S. (2002). Spectrum policy task force report. Federal Communications Commission ET Docket, 135(02)
5.
go back to reference DARPA. Adaptive rf technology (art). Technical report, DARPA, (2018). DARPA. Adaptive rf technology (art). Technical report, DARPA, (2018).
10.
go back to reference Mitola, J. (2000). Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio. PhD thesis, Royal Institute of Tech (KTH). Mitola, J. (2000). Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio. PhD thesis, Royal Institute of Tech (KTH).
17.
go back to reference Anwar, A. H., Seddik, K. G., ElBatt, T., & Zahran, A. H. (2013). Effective capacity of delay constrained cognitive radio links exploiting primary feedback. International Symposium on Modeling Optimization in Mobile AdHoc Wireless Networks (WiOpt), pp. 412–419. Anwar, A. H., Seddik, K. G., ElBatt, T., & Zahran, A. H. (2013). Effective capacity of delay constrained cognitive radio links exploiting primary feedback. International Symposium on Modeling Optimization in Mobile AdHoc Wireless Networks (WiOpt), pp. 412–419.
18.
19.
go back to reference Liu, L., Parag, P., Tang, J., Chen, W.-Y., & Chamberland, J.-F. (2007). Resource allocation and quality of service evaluation for wireless communication systems using fluid models. IEEE Transactions on Information Theory, 53(5), 1767–1777.MathSciNetCrossRef Liu, L., Parag, P., Tang, J., Chen, W.-Y., & Chamberland, J.-F. (2007). Resource allocation and quality of service evaluation for wireless communication systems using fluid models. IEEE Transactions on Information Theory, 53(5), 1767–1777.MathSciNetCrossRef
20.
go back to reference Tang, J., & Zhang, X. (2007). Quality-of-service driven power and rate adaptation for multichannel communications over wireless links. IEEE Transactions on Wireless Communications, 6(12), 4349–4360.CrossRef Tang, J., & Zhang, X. (2007). Quality-of-service driven power and rate adaptation for multichannel communications over wireless links. IEEE Transactions on Wireless Communications, 6(12), 4349–4360.CrossRef
21.
go back to reference Simeone, O., Bar-Ness, Y., & Spagnolini, U. (2007). Stable throughput of cognitive radios with and without relaying capability. IEEE Transactions on Wireless Communications, 55(12), 2351–2360.CrossRef Simeone, O., Bar-Ness, Y., & Spagnolini, U. (2007). Stable throughput of cognitive radios with and without relaying capability. IEEE Transactions on Wireless Communications, 55(12), 2351–2360.CrossRef
24.
go back to reference Sanna, M., & Murroni, M. (2010). Nonconvex optimization of collaborative multiband spectrum sensing for cognitive radios with genetic algorithms. International Journal of Digital Multimedia Broadcasting, 2010. Sanna, M., & Murroni, M. (2010). Nonconvex optimization of collaborative multiband spectrum sensing for cognitive radios with genetic algorithms. International Journal of Digital Multimedia Broadcasting, 2010.
26.
go back to reference Chaoub, A., Ibn Elhaj, E., & El Abbadi, J. (2011). Multimedia traffic transmission over cognitive radio networks using multiple description coding. In International conference on advances in computing and communications, pp. 529–543. Springer, Berlin Heidelberg. Chaoub, A., Ibn Elhaj, E., & El Abbadi, J. (2011). Multimedia traffic transmission over cognitive radio networks using multiple description coding. In International conference on advances in computing and communications, pp. 529–543. Springer, Berlin Heidelberg.
28.
go back to reference Liu, Q., Zhou, S., & Giannakis, G. B. (2004). Cross-layer modeling of adaptive wireless links for QoS support in multimedia networks. In First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks, pp. 68–75, IEEE Liu, Q., Zhou, S., & Giannakis, G. B. (2004). Cross-layer modeling of adaptive wireless links for QoS support in multimedia networks. In First International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks, pp. 68–75, IEEE
35.
go back to reference Ding, G., Qihui, W., & Wang, J. (2013a). Sensing confidence level-based joint spectrum and power allocation in cognitive radio networks. Wireless Personal Communications, 72(1), 283–298.CrossRef Ding, G., Qihui, W., & Wang, J. (2013a). Sensing confidence level-based joint spectrum and power allocation in cognitive radio networks. Wireless Personal Communications, 72(1), 283–298.CrossRef
37.
go back to reference Srinivasa, S., & Jafar, S.A. (2007a). Soft sensing and optimal power control for cognitive radio. In Proceedings of IEEE Globecom, Washington, DC. Srinivasa, S., & Jafar, S.A. (2007a). Soft sensing and optimal power control for cognitive radio. In Proceedings of IEEE Globecom, Washington, DC.
38.
go back to reference Xing, Y., Mathur, C. N., Haleem, M. A., Chandramouli, R., & Subbalakshmi, K. P. (2007). Dynamic spectrum access with QoS and interference temperature constraints. IEEE Transactions on Mobile Computing, 6(4), 423–433.CrossRef Xing, Y., Mathur, C. N., Haleem, M. A., Chandramouli, R., & Subbalakshmi, K. P. (2007). Dynamic spectrum access with QoS and interference temperature constraints. IEEE Transactions on Mobile Computing, 6(4), 423–433.CrossRef
39.
go back to reference Ding, G., Qihui, W., & Wang, J. (2013b). Sensing confidence level-based joint spectrum and power allocation in cognitive radio networks. Wireless Personal Communications, 72(1), 283–298.CrossRef Ding, G., Qihui, W., & Wang, J. (2013b). Sensing confidence level-based joint spectrum and power allocation in cognitive radio networks. Wireless Personal Communications, 72(1), 283–298.CrossRef
41.
go back to reference Srinivasa, S., & Jafar, S. A. (2010). Soft sensing and optimal power control for cognitive radio. IEEE Transactions on Wireless Communications, 9(12), 3638–3649.CrossRef Srinivasa, S., & Jafar, S. A. (2010). Soft sensing and optimal power control for cognitive radio. IEEE Transactions on Wireless Communications, 9(12), 3638–3649.CrossRef
42.
go back to reference Quan, Z., Cui, S., & Sayed, A. H. (2008). Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 28–40.CrossRef Quan, Z., Cui, S., & Sayed, A. H. (2008). Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 28–40.CrossRef
43.
go back to reference El-Sherif, A. A., Sultan, A. K., & Seddik, K. G. (2010). Soft sensing-based multiple access for cognitive radio networks. In IEEE Global Telecommunications Conference, GLOBECOM, pp. 1–9. El-Sherif, A. A., Sultan, A. K., & Seddik, K. G. (2010). Soft sensing-based multiple access for cognitive radio networks. In IEEE Global Telecommunications Conference, GLOBECOM, pp. 1–9.
45.
go back to reference Tang, J., & Zhang, X. (2008). Cross-layer-model based adaptive resource allocation for statistical QoS guarantees in mobile wireless networks. IEEE Transactions on Wireless Communications, 7(6), 2318–2328.CrossRef Tang, J., & Zhang, X. (2008). Cross-layer-model based adaptive resource allocation for statistical QoS guarantees in mobile wireless networks. IEEE Transactions on Wireless Communications, 7(6), 2318–2328.CrossRef
46.
go back to reference Chang, C. S. (1995). Performance guarantees in communication networks, Chapter 7. Berlin: Springer. Chang, C. S. (1995). Performance guarantees in communication networks, Chapter 7. Berlin: Springer.
47.
go back to reference Bertsekas, D. P., & Gallager, R. G. (1992). Data networks, Chapter 3. Upper Saddle River: Prentice Hall.MATH Bertsekas, D. P., & Gallager, R. G. (1992). Data networks, Chapter 3. Upper Saddle River: Prentice Hall.MATH
49.
go back to reference Boyed, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge Univesity Press.CrossRef Boyed, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge Univesity Press.CrossRef
50.
go back to reference Abdel-Malek, M., Seddik, K., ElBatt, T., & Mohasseb, Y. (2015, April). Effective capacity and delay optimization in cognitive radio networks. In International Conference on Cognitive Radio Oriented Wireless Networks (pp. 30–42). Springer, Cham. Abdel-Malek, M., Seddik, K., ElBatt, T., & Mohasseb, Y. (2015, April). Effective capacity and delay optimization in cognitive radio networks. In International Conference on Cognitive Radio Oriented Wireless Networks (pp. 30–42). Springer, Cham.
Metadata
Title
Effective capacity optimization for cognitive radio networks under primary QoS provisioning
Authors
Mai A. Abdel-Malek
Karim G. Seddik
Tamer ElBatt
Yahya Mohasseb
Publication date
21-06-2019
Publisher
Springer US
Published in
Wireless Networks / Issue 3/2020
Print ISSN: 1022-0038
Electronic ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-02002-w

Other articles of this Issue 3/2020

Wireless Networks 3/2020 Go to the issue