Skip to main content
Top
Published in: Progress in Additive Manufacturing 4/2022

29-01-2022 | Full Research Article

Effective thermal conductivity of 3D-printed continuous wire polymer composites

Authors: Yehia Ibrahim, Roger Kempers

Published in: Progress in Additive Manufacturing | Issue 4/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

3D printing can be used to improve the geometric design of heat transfer structures by allowing the fabrication of more complex shapes which can enhance convective heat transfer; however, this can come at the expense of having a lower solid-phase thermal conductivity, especially when polymers are used. Improving the thermal conductivity of 3D-printed components has been the focus of many studies because of the potential to leverage additive manufacturing (AM) for thermal applications, such as heat exchangers. This study describes a fabrication process whereby 3D-printed polymer composites consisting of continuous metal wires and with enhanced effective thermal conductivity are fabricated using a modified fused filament fabrication (FFF) 3D printer. The wires were coextruded with the molten polymer through a modified hot end and nozzle assembly. The printed components have higher thermal conductivity than the base polymer because the wires create high thermal conductivity pathways in the printed rasters. Samples with different wire volume fractions, printing directions, and matrix materials were printed to investigate the effect of these parameters on the thermal conductivity of the printed composites. The thermal conductivity of the printed samples was evaluated experimentally using a steady-state measuring setup and analytically modeled using network thermal resistance models. The results show that 3D-printed continuous wire polymer composites can have a thermal conductivity as high as 9.4 W/mK using a volume fraction of 2.7% of continuous copper wires compared with 0.22 W/mK for the base polymer. Model results further demonstrate that usage of a higher volume fraction of conductive wires or other continuous conductive filler can further improve the thermal conductivity of these 3D-printed composites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B Eng 110:442–458CrossRef Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos Part B Eng 110:442–458CrossRef
5.
go back to reference Sa’ude N, Masood SH, Nikzad M, Ibrahim M, Ibrahim MHI (2013) Dynamic mechanical properties of Copper–ABS composites for FDM feedstock. Int J Eng Res Appl 3:1257–1263 Sa’ude N, Masood SH, Nikzad M, Ibrahim M, Ibrahim MHI (2013) Dynamic mechanical properties of Copper–ABS composites for FDM feedstock. Int J Eng Res Appl 3:1257–1263
6.
go back to reference Nikzad M, Masood SH, Sbarski I (2011) Thermo-mechanical properties of a highly filled polymeric composites for Fused Deposition Modeling. Mater Des 32(6):3448–3456CrossRef Nikzad M, Masood SH, Sbarski I (2011) Thermo-mechanical properties of a highly filled polymeric composites for Fused Deposition Modeling. Mater Des 32(6):3448–3456CrossRef
10.
go back to reference Brenken B, Barocio E, Favaloro A, Kunc V, Pipes RB (2018) Fused filament fabrication of fiber-reinforced polymers: a review. Addit Manuf 21(January):1–16 Brenken B, Barocio E, Favaloro A, Kunc V, Pipes RB (2018) Fused filament fabrication of fiber-reinforced polymers: a review. Addit Manuf 21(January):1–16
12.
go back to reference Ning F, Cong W, Hu Y, Wang H (2017) Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: effects of process parameters on tensile properties. J Compos Mater 51(4):451–462CrossRef Ning F, Cong W, Hu Y, Wang H (2017) Additive manufacturing of carbon fiber-reinforced plastic composites using fused deposition modeling: effects of process parameters on tensile properties. J Compos Mater 51(4):451–462CrossRef
13.
go back to reference Ivey M, Melenka GW, Carey JP, Ayranci C (2017) Characterizing short-fiber-reinforced composites produced using additive manufacturing. Adv Manuf Polym Compos Sci 3(3):81–91 Ivey M, Melenka GW, Carey JP, Ayranci C (2017) Characterizing short-fiber-reinforced composites produced using additive manufacturing. Adv Manuf Polym Compos Sci 3(3):81–91
17.
go back to reference Berman R (1976) Thermal conduction in solids. Clarendon press, Oxford Berman R (1976) Thermal conduction in solids. Clarendon press, Oxford
18.
go back to reference Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2015) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85CrossRef Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2015) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85CrossRef
19.
go back to reference Prasher R (2009) Acoustic mismatch model for thermal contact resistance of van der Waals contacts. Appl Phys Lett 94(4):1–4CrossRef Prasher R (2009) Acoustic mismatch model for thermal contact resistance of van der Waals contacts. Appl Phys Lett 94(4):1–4CrossRef
20.
go back to reference Pietrak K, Wiśniewski TS (2014) Methods for experimental determination of solid-solid interfacial thermal resistance with application to composite materials. J Power Technol 94(4):270–285 Pietrak K, Wiśniewski TS (2014) Methods for experimental determination of solid-solid interfacial thermal resistance with application to composite materials. J Power Technol 94(4):270–285
21.
go back to reference Ibrahim Y, Elkholy A, Schofield J, Melenka GW, Kempers R (2020) Effective thermal conductivity of 3D-printed continuous fiber polymer composites. Adv Manuf Polym Compos Sci 6:17–28 Ibrahim Y, Elkholy A, Schofield J, Melenka GW, Kempers R (2020) Effective thermal conductivity of 3D-printed continuous fiber polymer composites. Adv Manuf Polym Compos Sci 6:17–28
22.
go back to reference Ghosh B, Yousef W, Al Jaberi M, Al Hajeri N, Al Braiki A, Eveloy V, Rodgers P (2016) Design and investigation into the thermal and mechanical performance of a polymer composite prototype gas–liquid heat exchanger. Int J Thermal Environ Eng 11:51–59 Ghosh B, Yousef W, Al Jaberi M, Al Hajeri N, Al Braiki A, Eveloy V, Rodgers P (2016) Design and investigation into the thermal and mechanical performance of a polymer composite prototype gas–liquid heat exchanger. Int J Thermal Environ Eng 11:51–59
23.
go back to reference Ibrahim Y, Melenka GW, Kempers R (2018) Additive manufacturing of continuous wire polymer composites. Manuf Lett 16(April):49–51CrossRef Ibrahim Y, Melenka GW, Kempers R (2018) Additive manufacturing of continuous wire polymer composites. Manuf Lett 16(April):49–51CrossRef
25.
go back to reference Saleh M, Kempers R, Melenka GW (2019) 3D printed continuous wire polymer composites strain sensors for structural health monitoring. Smart Mater Struct 28:10541 Saleh M, Kempers R, Melenka GW (2019) 3D printed continuous wire polymer composites strain sensors for structural health monitoring. Smart Mater Struct 28:10541
27.
go back to reference Elkholy A, Rouby M, Kempers R (2019) Characterization of the anisotropic thermal conductivity of additively manufactured components by fused filament fabrication. Prog Addit Manuf 4:497–515CrossRef Elkholy A, Rouby M, Kempers R (2019) Characterization of the anisotropic thermal conductivity of additively manufactured components by fused filament fabrication. Prog Addit Manuf 4:497–515CrossRef
Metadata
Title
Effective thermal conductivity of 3D-printed continuous wire polymer composites
Authors
Yehia Ibrahim
Roger Kempers
Publication date
29-01-2022
Publisher
Springer International Publishing
Published in
Progress in Additive Manufacturing / Issue 4/2022
Print ISSN: 2363-9512
Electronic ISSN: 2363-9520
DOI
https://doi.org/10.1007/s40964-021-00256-5

Other articles of this Issue 4/2022

Progress in Additive Manufacturing 4/2022 Go to the issue

Premium Partners