Skip to main content
Top
Published in: Rheologica Acta 1/2004

01-12-2004 | Original Contribution

Effects of electric fields and volume fraction on the rheology of hematite/silicone oil suspensions

Authors: Manuel J. Espín, Angel V. Delgado, James E. Martin

Published in: Rheologica Acta | Issue 1/2004

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electrorheological (ER) fluids composed of iron(III) oxide (hematite) particles suspended in silicone oil are studied in this work. The rheological response has been characterized as a function of field strength, shear rate and volume fraction. The dielectric properties of the suspensions were first studied in order to get information about the conductivity of the solid. Rheological tests under a.c. electric fields elucidated the influence of the electric field strength and volume fraction on the field-dependent yield stress. It was found that this quantity scales as a square power law in both cases. The viscosities of electrified suspensions were found to increase by several orders of magnitude as compared to the unelectrified suspension at low shear rates, although at high shear rates hydrodynamic effects become dominant and no effects of the electric field on the viscosity are observed. The ER behaviour of the suspensions was analysed by considering the fundamental forces (of hydrodynamic and electrostatic origin) acting on the particles and it is found that, at a given volume fraction, all the dependencies of relative viscosity on shear rate and field strength can be described by a single function of the Mason number, Mn. Finally, two different chain models were used to explain the shear-thinning behaviour observed: rheological measurements showed a power-law dependence of relative viscosity decrease on the Mason number, η F ~Mn Δ , with Δ≈−0.95.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Anderson RA (1994) Electrostatic forces in an ideal spherical-particle electrorheological fluid. Langmuir 10:2917–2928 Anderson RA (1994) Electrostatic forces in an ideal spherical-particle electrorheological fluid. Langmuir 10:2917–2928
go back to reference Atten P, Foulc J-N, Felici N (1994) A conduction model of the electrorheological effect. Int J Mod Phys B 8:2731–2745 Atten P, Foulc J-N, Felici N (1994) A conduction model of the electrorheological effect. Int J Mod Phys B 8:2731–2745
go back to reference Block H, Kelley JP (1985) GB Patent 2170510 Block H, Kelley JP (1985) GB Patent 2170510
go back to reference Block H, Kelley JP (1988) Electrorheology. J Phys D 21:1661–1677 Block H, Kelley JP (1988) Electrorheology. J Phys D 21:1661–1677
go back to reference Block H, Kelley JP, Qin A, Watson T (1990) Materials and mechanisms in electrorheology. Langmuir 6:6–14 Block H, Kelley JP, Qin A, Watson T (1990) Materials and mechanisms in electrorheology. Langmuir 6:6–14
go back to reference Chen Y, Sprecher AF, Conrad H (1991) Electrostatic particle-particle interaction in electrorheological fluids. J Appl Phys 70:6796–6803 Chen Y, Sprecher AF, Conrad H (1991) Electrostatic particle-particle interaction in electrorheological fluids. J Appl Phys 70:6796–6803
go back to reference Conrad H, Chen Y (1995) Electrical properties and the strength of electrorheological (ER) fluids. In: Havelka KO, Filisko FE (eds), Progress in electrorheology. Proceedings of the Electrorheological Materials and Fluids Symposium, Washington DC, 21–22 August 1994. Plenum, New York, pp 55–85 Conrad H, Chen Y (1995) Electrical properties and the strength of electrorheological (ER) fluids. In: Havelka KO, Filisko FE (eds), Progress in electrorheology. Proceedings of the Electrorheological Materials and Fluids Symposium, Washington DC, 21–22 August 1994. Plenum, New York, pp 55–85
go back to reference Conrad H, Fisher M, Sprecher AF (1990) Characterization of the structure of a model electrorheological fluid employing stereology. In: Carlson JD, Sprecher AF, Conrad H (eds), Proceedings of the 2nd International Conference on Electrorheological Fluids, Raleigh, 7–9 August 1989. Technomics, Lancaster, pp 63–81 Conrad H, Fisher M, Sprecher AF (1990) Characterization of the structure of a model electrorheological fluid employing stereology. In: Carlson JD, Sprecher AF, Conrad H (eds), Proceedings of the 2nd International Conference on Electrorheological Fluids, Raleigh, 7–9 August 1989. Technomics, Lancaster, pp 63–81
go back to reference Davis LC (1992) Polarization forces and conductivity effects in electorheological fluids. J Appl Phys 72:1334–1340 Davis LC (1992) Polarization forces and conductivity effects in electorheological fluids. J Appl Phys 72:1334–1340
go back to reference De Gans BJ, Hoekstra H, Mellema J (1999) Non-linear magnetorheological behaviour of an inverse ferrofluid. Faraday Disc 112:209–224 De Gans BJ, Hoekstra H, Mellema J (1999) Non-linear magnetorheological behaviour of an inverse ferrofluid. Faraday Disc 112:209–224
go back to reference Deinega YF, Vinogradov GV (1984) Electric fields in the rheology of disperse systems. Rheol Acta 23:636–651 Deinega YF, Vinogradov GV (1984) Electric fields in the rheology of disperse systems. Rheol Acta 23:636–651
go back to reference Dhont JKG (1996) An introduction to the dynamics of colloids, Elsevier, Amsterdam, p 282 Dhont JKG (1996) An introduction to the dynamics of colloids, Elsevier, Amsterdam, p 282
go back to reference Foulc J-N, Atten P, Felici N (1994) Macroscopic interaction between particles in electrorheological fluids. J Electrostatic 33:103–112 Foulc J-N, Atten P, Felici N (1994) Macroscopic interaction between particles in electrorheological fluids. J Electrostatic 33:103–112
go back to reference Goodwin JW, Markham GM, Vincent B (1997) Studies on model electrorheological fluids. J Phys Chem B 101:1961–1967 Goodwin JW, Markham GM, Vincent B (1997) Studies on model electrorheological fluids. J Phys Chem B 101:1961–1967
go back to reference Halsey TC, Martin JE, Adolf D (1992) Rheology of electrorheological fluids. Phys Rev Lett 68:1519–1522 Halsey TC, Martin JE, Adolf D (1992) Rheology of electrorheological fluids. Phys Rev Lett 68:1519–1522
go back to reference Hao T (2002) Electrorheological suspensions. Adv Colloid Interface Sci 97:1–35 Hao T (2002) Electrorheological suspensions. Adv Colloid Interface Sci 97:1–35
go back to reference Hao T, Kawai A, Ikazaki F (1998) Mechanism of the electrorheological effect: evidence from the conductive, dielectric and surface characteristics of water-free electrorheological fluids. Langmuir 14:1256–1262 Hao T, Kawai A, Ikazaki F (1998) Mechanism of the electrorheological effect: evidence from the conductive, dielectric and surface characteristics of water-free electrorheological fluids. Langmuir 14:1256–1262
go back to reference Kim YD, Klingenber DJ (1996) Two roles of non-ionic surfactants on the eletrorheological response. J Colloid Interface Sci 183:568–578 Kim YD, Klingenber DJ (1996) Two roles of non-ionic surfactants on the eletrorheological response. J Colloid Interface Sci 183:568–578
go back to reference Klass DL, Martinek TW (1967a) Electroviscous fluids I. Rheological properties. J Appl Phys 38:67–74 Klass DL, Martinek TW (1967a) Electroviscous fluids I. Rheological properties. J Appl Phys 38:67–74
go back to reference Klass DL, Martinek TW (1967b) Electroviscous fluids II. Electrical properties. J Appl Phys 38:75–80 Klass DL, Martinek TW (1967b) Electroviscous fluids II. Electrical properties. J Appl Phys 38:75–80
go back to reference Klingenberg DJ, Zukoski CF (1990) Studies on the steady-shear behavior of electrorheological suspensions. Langmuir 6:15–24 Klingenberg DJ, Zukoski CF (1990) Studies on the steady-shear behavior of electrorheological suspensions. Langmuir 6:15–24
go back to reference Klingenberg DJ, Van Swol F, Zukoski CF (1991) The small shear rate response of electrorheological suspension I. Simulation in the point dipole limit. J Chem Phys 94:6160–6169 Klingenberg DJ, Van Swol F, Zukoski CF (1991) The small shear rate response of electrorheological suspension I. Simulation in the point dipole limit. J Chem Phys 94:6160–6169
go back to reference Marshall L, Zukoski CF, Goodwin JW (1989) Effects of electric fields on rheology of non aqueous concentrated suspensions. J Chem Soc Faraday Trans 85:2785–2795 Marshall L, Zukoski CF, Goodwin JW (1989) Effects of electric fields on rheology of non aqueous concentrated suspensions. J Chem Soc Faraday Trans 85:2785–2795
go back to reference Martin JE (2001) Thermal chain model of electrorheology and magnetorheology. Phys Rev E 63:0114061–0114069 Martin JE (2001) Thermal chain model of electrorheology and magnetorheology. Phys Rev E 63:0114061–0114069
go back to reference Martin JE, Anderson RA (1996) Chain model of electrorheology. J Chem Phys 104:4814–4827 Martin JE, Anderson RA (1996) Chain model of electrorheology. J Chem Phys 104:4814–4827
go back to reference Parthsarathy M, Klingenberg DJ (1996) Electrorheology: mechanism and models. Mater Sci Eng R 17:57–103 Parthsarathy M, Klingenberg DJ (1996) Electrorheology: mechanism and models. Mater Sci Eng R 17:57–103
go back to reference Stangroom JE (1983) Electrorheological fluids. Phys Technol 14:290–296 Stangroom JE (1983) Electrorheological fluids. Phys Technol 14:290–296
go back to reference Winslow WM (1949) Induced fibration of suspensions. J Appl Phys 20:1137–1140 Winslow WM (1949) Induced fibration of suspensions. J Appl Phys 20:1137–1140
go back to reference Xu Y, Liang R (1991) Electrorheological properties of semiconducting polymer-based suspensions. J Rheol 35:1355–1373 Xu Y, Liang R (1991) Electrorheological properties of semiconducting polymer-based suspensions. J Rheol 35:1355–1373
go back to reference Young KF, Frederikse HPR (1973) Compilation of the static dielectric constant of inorganic solids. J Phys Chem Ref Data 2:313–409 Young KF, Frederikse HPR (1973) Compilation of the static dielectric constant of inorganic solids. J Phys Chem Ref Data 2:313–409
Metadata
Title
Effects of electric fields and volume fraction on the rheology of hematite/silicone oil suspensions
Authors
Manuel J. Espín
Angel V. Delgado
James E. Martin
Publication date
01-12-2004
Publisher
Springer-Verlag
Published in
Rheologica Acta / Issue 1/2004
Print ISSN: 0035-4511
Electronic ISSN: 1435-1528
DOI
https://doi.org/10.1007/s00397-004-0375-6

Other articles of this Issue 1/2004

Rheologica Acta 1/2004 Go to the issue

Original contribution

Waves on viscoelastic films

Premium Partners