Skip to main content
Top
Published in: Journal of Iron and Steel Research International 9/2020

31-03-2020 | Original Paper

Effects of ferrosilicon alloy, Si content of steel, and slag basicity on compositions of inclusions during ladle furnace refining of Al-killed steel

Authors: Jian-fei Xu, Kun-peng Wang, Ying Wang, Zhi-dong Qu, Xing-kuang Tu

Published in: Journal of Iron and Steel Research International | Issue 9/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To obtain solid Al2O3 or MgO·Al2O3 inclusions in ladle furnace (LF) refining process and achieve ultra-low total oxygen content in steel through subsequent Ruhrstahl Heraeus degassing, the effects of ferrosilicon alloy, Si content of steel, and slag basicity on the compositions of inclusions during LF refining were investigated in Al-killed steel. Al2O3 inclusions could be transformed into CaO–Al2O3–MgO–CaS inclusions after adding ferrosilicon alloy in the LF refining process as this alloy contains some CaSi alloy impurities. The addition of all ferrosilicon alloys required for the steel in the tapping process could eliminate the influence of Ca in ferrosilicon alloy on the compositions of inclusions. Si in liquid steel had a significant influence on the compositions of inclusions during LF refining when CaO–Al2O3–SiO2–MgO slag with high basicity of 7.0 was used. This was because [Ca] produced by the reaction of CaO and [Al] could be consumed more readily by SiO2 in Si-free steel than in Si-containing steel, which was confirmed by the difference of total calcium content between Si-free and Si-containing steels. As a result, Al2O3 and MgO·Al2O3 inclusions were retained in Si-free steel, whereas calcium aluminate inclusions were found in Si-containing steel. For CaO–Al2O3–SiO2–MgO slag with low basicity of 2.8, Al2O3 and MgO·Al2O3 inclusions were obtained after LF refining in Si-containing steel when all ferrosilicon alloys required for the steel were added in the tapping process. This was because the reaction of CaO and [Al] was weak, and residual [Ca] in the steel could be rapidly consumed by SiO2 in low-basicity slag owing to the low activity of CaO and high activity of SiO2, leading to a low total calcium content of 0.0003% in Si-containing steel.
Literature
[1]
go back to reference G. Yang, X. Wang, F. Huang, W. Wang, Y. Yin, Steel Res. Int. 85 (2014) 26–34.CrossRef G. Yang, X. Wang, F. Huang, W. Wang, Y. Yin, Steel Res. Int. 85 (2014) 26–34.CrossRef
[2]
go back to reference T. Yoshioka, T. Ideguchi, A. Karasev, Y. Ohba, P.G. Jönsson, Steel Res. Int. 89 (2018) 1700287.CrossRef T. Yoshioka, T. Ideguchi, A. Karasev, Y. Ohba, P.G. Jönsson, Steel Res. Int. 89 (2018) 1700287.CrossRef
[3]
go back to reference Z.Y. Deng, Y.L. Zhou, M.Y. Zhu, Iron and Steel 53 (2018) No. 1, 34–40. Z.Y. Deng, Y.L. Zhou, M.Y. Zhu, Iron and Steel 53 (2018) No. 1, 34–40.
[4]
[6]
go back to reference H. Arai, K. Matsumoto, S. Shimasaki, S. Taniguchi, ISIJ Int. 49 (2009) 965–974.CrossRef H. Arai, K. Matsumoto, S. Shimasaki, S. Taniguchi, ISIJ Int. 49 (2009) 965–974.CrossRef
[7]
go back to reference J. Xu, F. Huang, X. Wang, C. Jing, X. Guo, Ironmak. Steelmak. 44 (2017) 455–460.CrossRef J. Xu, F. Huang, X. Wang, C. Jing, X. Guo, Ironmak. Steelmak. 44 (2017) 455–460.CrossRef
[8]
go back to reference X.H. Wang, X.G. Li, Q. Li, F.X. Huang, H.B. Li, J. Yang, Steel Res. Int. 85 (2014) 155–163.CrossRef X.H. Wang, X.G. Li, Q. Li, F.X. Huang, H.B. Li, J. Yang, Steel Res. Int. 85 (2014) 155–163.CrossRef
[9]
go back to reference X.H. Wang, X.G. Li, Q. Li, F.X. Huang, H.B. Li, J. Yang, Acta Metall. Sin. 49 (2013) 553–561.CrossRef X.H. Wang, X.G. Li, Q. Li, F.X. Huang, H.B. Li, J. Yang, Acta Metall. Sin. 49 (2013) 553–561.CrossRef
[10]
go back to reference M. Jiang. X.H. Wang, W.J. Wang, Steel Res. Int. 81 (2010) 759–765. M. Jiang. X.H. Wang, W.J. Wang, Steel Res. Int. 81 (2010) 759–765.
[11]
[12]
go back to reference D. Yang, X.H. Wang, G.W. Yang, P.Y. Wei, J.P. He, Steel Res. Int. 85 (2014) 1517–1524.CrossRef D. Yang, X.H. Wang, G.W. Yang, P.Y. Wei, J.P. He, Steel Res. Int. 85 (2014) 1517–1524.CrossRef
[13]
go back to reference H.X. Yu, X.H. Wang, J. Zhang, H.B. Li, W.J. Wang, J. Iron Steel Res. Int. 18 (2011) No. 12, 6–11.CrossRef H.X. Yu, X.H. Wang, J. Zhang, H.B. Li, W.J. Wang, J. Iron Steel Res. Int. 18 (2011) No. 12, 6–11.CrossRef
[14]
go back to reference H.X. Yu, X.H. Wang, J. Zhang, W.J. Wang, J. Iron Steel Res. Int. 22 (2015) 573–581.CrossRef H.X. Yu, X.H. Wang, J. Zhang, W.J. Wang, J. Iron Steel Res. Int. 22 (2015) 573–581.CrossRef
[15]
go back to reference W. Yang, J. Cao, X.H. Wang, Z.R. Xu, J. Yang, J. Iron Steel Res. Int. 18 (2011) No. 9, 6–12.CrossRef W. Yang, J. Cao, X.H. Wang, Z.R. Xu, J. Yang, J. Iron Steel Res. Int. 18 (2011) No. 9, 6–12.CrossRef
[16]
go back to reference J. Yang, X.H. Wang, M. Jiang, W.J. Wang, J. Iron Steel Res. Int. 18 (2011) No. 7, 8–14.CrossRef J. Yang, X.H. Wang, M. Jiang, W.J. Wang, J. Iron Steel Res. Int. 18 (2011) No. 7, 8–14.CrossRef
[17]
go back to reference M. Herrera, F. Castro, M. Castro, M. Méndez, H. Solís, A. Castellá, M. Barbaro, Ironmak. Steelmak. 33 (2006) 45–51.CrossRef M. Herrera, F. Castro, M. Castro, M. Méndez, H. Solís, A. Castellá, M. Barbaro, Ironmak. Steelmak. 33 (2006) 45–51.CrossRef
[18]
go back to reference M. Li, S. Li, Y. Ren, W. Yang, L. Zhang, Ironmak. Steelmak. 47 (2020) 6–12.CrossRef M. Li, S. Li, Y. Ren, W. Yang, L. Zhang, Ironmak. Steelmak. 47 (2020) 6–12.CrossRef
[19]
go back to reference B. Wen, B. Song, N. Pan, Q.Y. Hu, J.H. Mao, Ironmak. Steelmak. 38 (2011) 577–583.CrossRef B. Wen, B. Song, N. Pan, Q.Y. Hu, J.H. Mao, Ironmak. Steelmak. 38 (2011) 577–583.CrossRef
[20]
go back to reference Z. Deng, M. Zhu, B. Zhong, X. Tian, L. Hu, in: Chinese Society for Metals (Eds.), Proceedings of the 17th National Conference on Steelmaking, Metallurgical Industry Press, Hangzhou, China, 2013, pp. 400-405. Z. Deng, M. Zhu, B. Zhong, X. Tian, L. Hu, in: Chinese Society for Metals (Eds.), Proceedings of the 17th National Conference on Steelmaking, Metallurgical Industry Press, Hangzhou, China, 2013, pp. 400-405.
[22]
go back to reference E.B. Pretorius, H.G. Oltmann, B.T. Schart, in: K.D. Hickey, K.J. McGhee (Eds.), AISTech 2013 Conference Proceedings, Assoc. Iron Steel Technology, Pittsburgh, USA, 2013, pp. 333–345. E.B. Pretorius, H.G. Oltmann, B.T. Schart, in: K.D. Hickey, K.J. McGhee (Eds.), AISTech 2013 Conference Proceedings, Assoc. Iron Steel Technology, Pittsburgh, USA, 2013, pp. 333–345.
[23]
go back to reference H. Todoroki, K. Mizuno, Iron & Steelmaker 30 (2003) 60–67. H. Todoroki, K. Mizuno, Iron & Steelmaker 30 (2003) 60–67.
Metadata
Title
Effects of ferrosilicon alloy, Si content of steel, and slag basicity on compositions of inclusions during ladle furnace refining of Al-killed steel
Authors
Jian-fei Xu
Kun-peng Wang
Ying Wang
Zhi-dong Qu
Xing-kuang Tu
Publication date
31-03-2020
Publisher
Springer Singapore
Published in
Journal of Iron and Steel Research International / Issue 9/2020
Print ISSN: 1006-706X
Electronic ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00384-2

Other articles of this Issue 9/2020

Journal of Iron and Steel Research International 9/2020 Go to the issue

Premium Partners