Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 9/2015

01-09-2015

Effects of Finish Cooling Temperature on Tensile Properties After Thermal Aging of Strain-Based API X60 Linepipe Steels

Authors: Hyo Kyung Sung, Dong Ho Lee, Sang Yong Shin, Sunghak Lee, Yunjo Ro, Chang Sun Lee, Byoungchul Hwang

Published in: Metallurgical and Materials Transactions A | Issue 9/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Two types of strain-based American Petroleum Institute (API) X60 linepipe steels were fabricated at two finish cooling temperatures, 673 K and 723 K (400 °C and 450 °C), and the effects of the finish cooling temperatures on the tensile properties after thermal aging were investigated. The strain-based API X60 linepipe steels consisted mainly of polygonal ferrite (PF) or quasi-polygonal ferrite and the volume fraction of acicular ferrite increased with the increasing finish cooling temperature. In contrast, the volume fractions of bainitic ferrite (BF) and secondary phases decreased. The tensile properties before and after thermal aging at 473 K and 523 K (200 °C and 250 °C) were measured. The yield strength, ultimate tensile strength, and yield ratio increased with the increasing thermal aging temperature. The strain hardening rate in the steel fabricated at the higher finish cooling temperature decreased rapidly after thermal aging, probably due to the Cottrell atmosphere, whereas the strain hardening rate in the steel fabricated at the lower finish cooling temperature changed slightly after thermal aging. The uniform elongation and total elongation decreased with increasing thermal aging temperature, probably due to the interactions between carbon atoms and dislocations. The uniform elongation decreased rapidly with the decreasing volume fractions of BF and martensite and secondary phases. The yield ratio increased with the increasing thermal aging temperature, whereas the strain hardening exponent decreased. The strain hardening exponent of PL steel decreased rapidly after thermal aging because of the large number of mobile dislocations between PF and BF or martensite or secondary phases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference T. Araki: Atlas for Bainitic Microstructures, ISIJ, Tokyo, 1992, pp. 1–100. T. Araki: Atlas for Bainitic Microstructures, ISIJ, Tokyo, 1992, pp. 1–100.
2.
go back to reference J.Y. Koo, M.J. Luton, N.V. Bangaru, R.A. Petkovic, D.P. Fairchild, C.W. Petersen, H. Asahi, T. Hara, Y. Terada, M. Sugiyama, H. Tamehiro, Y. Komizo, S. Okaguchi, M. Hamada, A. Yamamoto, and I. Takeuchi: Proc. 13th Int. Offshore Polar Eng. Conf., Honolulu, Hawaii, 2003, pp. 10–18. J.Y. Koo, M.J. Luton, N.V. Bangaru, R.A. Petkovic, D.P. Fairchild, C.W. Petersen, H. Asahi, T. Hara, Y. Terada, M. Sugiyama, H. Tamehiro, Y. Komizo, S. Okaguchi, M. Hamada, A. Yamamoto, and I. Takeuchi: Proc. 13th Int. Offshore Polar Eng. Conf., Honolulu, Hawaii, 2003, pp. 10–18.
3.
go back to reference K. Nagai, Y. Shinohara, S. Sakamoto, E. Tsuru, and H. Asahi: Proc. 19th Int. Offshore Polar Eng. Conf., Osaka, Japan, 2009, pp. 56–60. K. Nagai, Y. Shinohara, S. Sakamoto, E. Tsuru, and H. Asahi: Proc. 19th Int. Offshore Polar Eng. Conf., Osaka, Japan, 2009, pp. 56–60.
4.
go back to reference M.W. Hukle, B.D. Newbury, D.B. Lillig, J.J. Regina, and A.M. Horn: Proc. 27th Int. Conf. on Offshore Mech. and Arctic Eng., Estoril, Portugal, 2008, pp. 16–19. M.W. Hukle, B.D. Newbury, D.B. Lillig, J.J. Regina, and A.M. Horn: Proc. 27th Int. Conf. on Offshore Mech. and Arctic Eng., Estoril, Portugal, 2008, pp. 16–19.
5.
go back to reference G. Shigesato, Y. Shinohara, T. Hara, M. Sugiyama, and H. Asahi: Proc. 16th Int. Offshore Polar Eng. Conf., Lisbon, Portugal, 2007, pp. 2983–87. G. Shigesato, Y. Shinohara, T. Hara, M. Sugiyama, and H. Asahi: Proc. 16th Int. Offshore Polar Eng. Conf., Lisbon, Portugal, 2007, pp. 2983–87.
6.
go back to reference Y. Shinohara, T. Hara, E. Tsuru, and H. Asahi: Proc. 16th Int. Offshore Polar Eng. Conf., Lisbon, Portugal, 2007, pp. 2949–54. Y. Shinohara, T. Hara, E. Tsuru, and H. Asahi: Proc. 16th Int. Offshore Polar Eng. Conf., Lisbon, Portugal, 2007, pp. 2949–54.
7.
go back to reference R. Denys: Pipeline Technology Conference, Elsevier, Amsterdam, 2000, vols. I, II, pp. 1–166. R. Denys: Pipeline Technology Conference, Elsevier, Amsterdam, 2000, vols. I, II, pp. 1–166.
8.
9.
go back to reference T. Hara, Y. Shinohara, Y. Terada, H. Asahi, and N. Doi: Proc. 19th Int. Offshore Polar Eng. Conf., Osaka, Japan, 2009, pp. 73–79. T. Hara, Y. Shinohara, Y. Terada, H. Asahi, and N. Doi: Proc. 19th Int. Offshore Polar Eng. Conf., Osaka, Japan, 2009, pp. 73–79.
10.
go back to reference D.B. Lillig: Proc. 18th Int. Offshore Polar Eng. Conf., Vancouver, Canada, 2008, pp. 1–12. D.B. Lillig: Proc. 18th Int. Offshore Polar Eng. Conf., Vancouver, Canada, 2008, pp. 1–12.
11.
go back to reference J. Hu, L.-X. Du, J.-J. Wang, C.-R. Gao, T.-Z. Yang, A.-Y. Wang, and R.D.K. Misra: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4937–47.CrossRef J. Hu, L.-X. Du, J.-J. Wang, C.-R. Gao, T.-Z. Yang, A.-Y. Wang, and R.D.K. Misra: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4937–47.CrossRef
12.
go back to reference V. Colla, M. Desanctis, A. Dimatteo, G. Lovicu, and R. Valentini: Metall. Mater. Trans. A, 2011, vol. 41A, pp. 2781–93.CrossRef V. Colla, M. Desanctis, A. Dimatteo, G. Lovicu, and R. Valentini: Metall. Mater. Trans. A, 2011, vol. 41A, pp. 2781–93.CrossRef
13.
go back to reference S.K. Kim, Y.M. Kim, Y.J. Lim, and N.J. Kim: Proc. 15th Conf. on Mech. Behavior of Mater., Seoul, Korea, 2001, pp. 177–86. S.K. Kim, Y.M. Kim, Y.J. Lim, and N.J. Kim: Proc. 15th Conf. on Mech. Behavior of Mater., Seoul, Korea, 2001, pp. 177–86.
14.
15.
go back to reference S.W. Thompson, D.J. Colvin, and G. Krauss: Metall. Trans. A, 1990, vol. 21A, pp. 1493-1507.CrossRef S.W. Thompson, D.J. Colvin, and G. Krauss: Metall. Trans. A, 1990, vol. 21A, pp. 1493-1507.CrossRef
16.
17.
go back to reference T. Hara, Y. Shinohara, Y. Hattori, T. Muraki, and N. Doi: Proc. 21th Int. Offshore Polar Eng. Conf., ISOPE, Hawaii, 2011, pp. 575–80. T. Hara, Y. Shinohara, Y. Hattori, T. Muraki, and N. Doi: Proc. 21th Int. Offshore Polar Eng. Conf., ISOPE, Hawaii, 2011, pp. 575–80.
18.
go back to reference Y.M. Kim, S.Y. Shin, H. Lee, B. Hwang S. Lee, and N.J. Kim: Metall. Mater. Trans. A, 2007, vol. 38A. pp. 1731-42.CrossRef Y.M. Kim, S.Y. Shin, H. Lee, B. Hwang S. Lee, and N.J. Kim: Metall. Mater. Trans. A, 2007, vol. 38A. pp. 1731-42.CrossRef
19.
go back to reference N. Ishikawa, H. Sueyoshi, and N. Shikanai: Proc. 19th Int. Offshore Polar Eng. Conf., Osaka, Japan, 2009, pp. 43–49. N. Ishikawa, H. Sueyoshi, and N. Shikanai: Proc. 19th Int. Offshore Polar Eng. Conf., Osaka, Japan, 2009, pp. 43–49.
20.
go back to reference H. Igari, H. Nakanura, and S. Okaguchi: Proc. 21th Int. Offshore Polar Eng. Conf., Hawaii, 2011, pp. 569–74. H. Igari, H. Nakanura, and S. Okaguchi: Proc. 21th Int. Offshore Polar Eng. Conf., Hawaii, 2011, pp. 569–74.
21.
go back to reference API Recommended Practice 5L3: American Petroleum Institute, Washington, DC, 1996. API Recommended Practice 5L3: American Petroleum Institute, Washington, DC, 1996.
22.
go back to reference W. Oldfield: Curve Fitting Impact Test Data–A Statistical Procedure, ASTM Standardizations News, West Conshohocken, PA, 1975, pp. 24–29. W. Oldfield: Curve Fitting Impact Test DataA Statistical Procedure, ASTM Standardizations News, West Conshohocken, PA, 1975, pp. 24–29.
23.
go back to reference D. Hull and D.J. Bacon: Introduction to Dislocations, 5th Ed., Elsevier Ltd., Amsterdam, 2011. D. Hull and D.J. Bacon: Introduction to Dislocations, 5th Ed., Elsevier Ltd., Amsterdam, 2011.
24.
go back to reference C. Capdevila, F.G. Caballero, and C. Garcia de Andres: ISIJ Int., 2003, vol. 42, pp. 894-902.CrossRef C. Capdevila, F.G. Caballero, and C. Garcia de Andres: ISIJ Int., 2003, vol. 42, pp. 894-902.CrossRef
25.
go back to reference K.W. Andrew: JISI, 1965, vol. 203, pp. 721-27. K.W. Andrew: JISI, 1965, vol. 203, pp. 721-27.
26.
27.
28.
go back to reference Y.M. Kim, S.K. Kim, and N.J. Kim: Mater. Sci. Forum, 2005, vol. 475, pp. 282–92. Y.M. Kim, S.K. Kim, and N.J. Kim: Mater. Sci. Forum, 2005, vol. 475, pp. 282–92.
Metadata
Title
Effects of Finish Cooling Temperature on Tensile Properties After Thermal Aging of Strain-Based API X60 Linepipe Steels
Authors
Hyo Kyung Sung
Dong Ho Lee
Sang Yong Shin
Sunghak Lee
Yunjo Ro
Chang Sun Lee
Byoungchul Hwang
Publication date
01-09-2015
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 9/2015
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-015-2984-3

Other articles of this Issue 9/2015

Metallurgical and Materials Transactions A 9/2015 Go to the issue

Premium Partners