Skip to main content
Top
Published in: Journal of Materials Engineering and Performance 10/2021

16-08-2021

Effects of Heat Treatment and Severe Plastic Deformation on Microstructure, Mechanical Properties and Midsection Ultimate Strength of Shipbuilding Steel

Author: D. M. Sekban

Published in: Journal of Materials Engineering and Performance | Issue 10/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Improving the strength values of low–medium-strength shipbuilding steels without changing the chemical properties will be very useful to meet the high-strength requirement in ships. Heat treatments and severe plastic deformation methods are the main methods used to increase the strength values of steel without changing the chemical structure. Considering the high improvement effect in strength values, quenching process and equal channel angular pressing (ECAP) method stand out among heat treatments and severe plastic deformation methods, respectively. In the current study, quenching and ECAP were applied to low–medium-strength shipbuilding steel and the changes in microstructure and mechanical properties of steel after these methods were comparatively investigated. While martensite was formed in the microstructure after quenching, the average grain size decreased compared to the base material without a phase change with ECAP. Hardness values increased by 100% after quenching and increased by 80% after ECAP. Yield and tensile strength values increased by 3.3 and 2.5 times, respectively, after quenching. On the other hand, yield and tensile strength values after ECAP raised less than after quenching and increased 1.5 and 1.7 times, respectively, compared to the base material. Impact toughness values decreased by 80% after quenching and 10% after ECAP compared to the base material. Also, corrosion resistance of the base material decreased by 13% after quenching and increased by 10% after ECAP. Changes in the mechanical properties of the material after these processes were reflected the middle section of a ship using finite element-based programs and approximately 3.3 times higher than that of the base material for all dimension load–ultimate strength values under uniaxial compression were reached in the model reflecting the mechanical properties of the quenched samples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. Ozekcin, H.W. Jin, J.Y. Koo, N.V. Bangaru, R. Ayer, G. Vaughn, R. Steel and S. Packer, A Microstructural Study of Friction Stir Welded Joints of Carbon Steels. Int. J. Offshore Polar Eng. 2004, 14(4), p 284–288. A. Ozekcin, H.W. Jin, J.Y. Koo, N.V. Bangaru, R. Ayer, G. Vaughn, R. Steel and S. Packer, A Microstructural Study of Friction Stir Welded Joints of Carbon Steels. Int. J. Offshore Polar Eng. 2004, 14(4), p 284–288.
2.
go back to reference D.M. Sekban, S.M. Aktarer, P. Xue, Z.Y. Ma and G. Purcek, Impact Toughness of Friction Stir Processed Low Carbon Steel Used in Shipbuilding, Mater. Sci. Eng. A, 2016, 672, p 40–48.CrossRef D.M. Sekban, S.M. Aktarer, P. Xue, Z.Y. Ma and G. Purcek, Impact Toughness of Friction Stir Processed Low Carbon Steel Used in Shipbuilding, Mater. Sci. Eng. A, 2016, 672, p 40–48.CrossRef
3.
go back to reference P. Xue, B.L. Xiao, W.G. Wang, Q. Zhang, D. Wang, Q.Z. Wang and Z.Y. Ma, Achieving Ultrafine Dual-Phase Structure with Superior Mechanical Property in Friction Stir Processed Plain Low Carbon Steel, Mater. Sci. Eng. A, 2013, 575(Supplement C), p 30–34.CrossRef P. Xue, B.L. Xiao, W.G. Wang, Q. Zhang, D. Wang, Q.Z. Wang and Z.Y. Ma, Achieving Ultrafine Dual-Phase Structure with Superior Mechanical Property in Friction Stir Processed Plain Low Carbon Steel, Mater. Sci. Eng. A, 2013, 575(Supplement C), p 30–34.CrossRef
4.
go back to reference R. Song, D. Ponge, D. Raabe, J.G. Speer and D.K. Matlock, Overview of Processing, Microstructure and Mechanical Properties of Ultrafine Grained bcc Steels, Mater. Sci. Eng. A, 2006, 441(1), p 1–17.CrossRef R. Song, D. Ponge, D. Raabe, J.G. Speer and D.K. Matlock, Overview of Processing, Microstructure and Mechanical Properties of Ultrafine Grained bcc Steels, Mater. Sci. Eng. A, 2006, 441(1), p 1–17.CrossRef
5.
go back to reference V.M. Segal, Materials Processing by Simple Shear, Mater. Sci. Eng. A, 1995, 197(2), p 157–164.CrossRef V.M. Segal, Materials Processing by Simple Shear, Mater. Sci. Eng. A, 1995, 197(2), p 157–164.CrossRef
6.
go back to reference S.-Y. Chen, K.-H. Chen, G.-S. Peng, X. Liang and X.-H. Chen, Effect of Quenching Rate on Microstructure and Stress Corrosion Cracking of 7085 Aluminum Alloy, Trans. Nonferr. Metals Soc. China, 2012, 22(1), p 47–52.CrossRef S.-Y. Chen, K.-H. Chen, G.-S. Peng, X. Liang and X.-H. Chen, Effect of Quenching Rate on Microstructure and Stress Corrosion Cracking of 7085 Aluminum Alloy, Trans. Nonferr. Metals Soc. China, 2012, 22(1), p 47–52.CrossRef
7.
go back to reference D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock and J.G. Speer, Quenching and Partitioning Martensite—A Novel Steel Heat Treatment, Mater. Sci. Eng. A, 2006, 438–440, p 25–34.CrossRef D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock and J.G. Speer, Quenching and Partitioning Martensite—A Novel Steel Heat Treatment, Mater. Sci. Eng. A, 2006, 438–440, p 25–34.CrossRef
8.
go back to reference M. Elhefnawey, G.L. Shuai, Z. Li, M. Nemat-Alla, D.T. Zhang and L. Li, On Achieving Superior Strength for Al–Mg–Zn Alloy Adopting Cold ECAP, Vacuum, 2020, 174, p 109191.CrossRef M. Elhefnawey, G.L. Shuai, Z. Li, M. Nemat-Alla, D.T. Zhang and L. Li, On Achieving Superior Strength for Al–Mg–Zn Alloy Adopting Cold ECAP, Vacuum, 2020, 174, p 109191.CrossRef
9.
go back to reference Y. Fukuda, K. Oh-ishi, Z. Horita and T.G. Langdon, Processing of a Low-Carbon Steel by Equal-Channel Angular Pressing, Acta Mater., 2002, 50(6), p 1359–1368.CrossRef Y. Fukuda, K. Oh-ishi, Z. Horita and T.G. Langdon, Processing of a Low-Carbon Steel by Equal-Channel Angular Pressing, Acta Mater., 2002, 50(6), p 1359–1368.CrossRef
10.
go back to reference Ö. Güler, N. Bağcı, S.H. Güler, C.A. Canbay, H. Safa, T.A. Yılmaz and M. Taşkın, The Effect of Equal-Channel Angular Pressing (ECAP) on the Properties of Graphene Reinforced Aluminium Matrix Composites, J. Compos. Mater., 2020, 55, p 1749–1768.CrossRef Ö. Güler, N. Bağcı, S.H. Güler, C.A. Canbay, H. Safa, T.A. Yılmaz and M. Taşkın, The Effect of Equal-Channel Angular Pressing (ECAP) on the Properties of Graphene Reinforced Aluminium Matrix Composites, J. Compos. Mater., 2020, 55, p 1749–1768.CrossRef
11.
go back to reference F. Hayat and H. Uzun, Effect of Heat Treatment on Microstructure, Mechanical Properties and Fracture Behaviour of Ship and Dual Phase Steels, J. Iron. Steel Res. Int., 2011, 18(8), p 65–72.CrossRef F. Hayat and H. Uzun, Effect of Heat Treatment on Microstructure, Mechanical Properties and Fracture Behaviour of Ship and Dual Phase Steels, J. Iron. Steel Res. Int., 2011, 18(8), p 65–72.CrossRef
12.
go back to reference C.X. Huang, G. Yang, Y.L. Gao, S.D. Wu and Z.F. Zhang, Influence of Processing Temperature on the Microstructures and Tensile Properties of 304L Stainless Steel by ECAP, Mater. Sci. Eng. A, 2008, 485(1), p 643–650.CrossRef C.X. Huang, G. Yang, Y.L. Gao, S.D. Wu and Z.F. Zhang, Influence of Processing Temperature on the Microstructures and Tensile Properties of 304L Stainless Steel by ECAP, Mater. Sci. Eng. A, 2008, 485(1), p 643–650.CrossRef
13.
go back to reference G.C. Hwang, S. Lee, J.Y. Yoo and W.Y. Choo, Effect of Direct Quenching on Microstructure and Mechanical Properties of Copper-Bearing High-Strength Alloy Steels, Mater. Sci. Eng. A, 1998, 252(2), p 256–268.CrossRef G.C. Hwang, S. Lee, J.Y. Yoo and W.Y. Choo, Effect of Direct Quenching on Microstructure and Mechanical Properties of Copper-Bearing High-Strength Alloy Steels, Mater. Sci. Eng. A, 1998, 252(2), p 256–268.CrossRef
14.
go back to reference H.Y. Li, X.W. Lu, W.J. Li and X.J. Jin, Microstructure and Mechanical Properties of an Ultrahigh-Strength 40SiMnNiCr Steel during the One-Step Quenching and Partitioning Process, Metall. Mater. Trans. A., 2010, 41(5), p 1284–1300.CrossRef H.Y. Li, X.W. Lu, W.J. Li and X.J. Jin, Microstructure and Mechanical Properties of an Ultrahigh-Strength 40SiMnNiCr Steel during the One-Step Quenching and Partitioning Process, Metall. Mater. Trans. A., 2010, 41(5), p 1284–1300.CrossRef
15.
go back to reference X. Li, L. Shi, Y. Liu, K. Gan and C. Liu, Achieving a desirable combination of mechanical properties in HSLA steel through step quenching, Mater. Sci. Eng. A, 2020, 772, p 138683.CrossRef X. Li, L. Shi, Y. Liu, K. Gan and C. Liu, Achieving a desirable combination of mechanical properties in HSLA steel through step quenching, Mater. Sci. Eng. A, 2020, 772, p 138683.CrossRef
16.
go back to reference A. Ma, J. Jiang, N. Saito, I. Shigematsu, Y. Yuan, D. Yang and Y. Nishida, Improving Both Strength and Ductility of a Mg Alloy Through A Large Number of ECAP Passes, Mater. Sci. Eng. A, 2009, 513–514, p 122–127.CrossRef A. Ma, J. Jiang, N. Saito, I. Shigematsu, Y. Yuan, D. Yang and Y. Nishida, Improving Both Strength and Ductility of a Mg Alloy Through A Large Number of ECAP Passes, Mater. Sci. Eng. A, 2009, 513–514, p 122–127.CrossRef
17.
go back to reference A.A. Popov, A.G. Illarionov, S.I. Stepanov and O.M. Ivasishin, Effect of Quenching Temperature on Structure and Properties of Titanium Alloy: Physicomechanical Properties, Phys. Met. Metallogr., 2014, 115(5), p 517–522.CrossRef A.A. Popov, A.G. Illarionov, S.I. Stepanov and O.M. Ivasishin, Effect of Quenching Temperature on Structure and Properties of Titanium Alloy: Physicomechanical Properties, Phys. Met. Metallogr., 2014, 115(5), p 517–522.CrossRef
18.
go back to reference R. Pourhamid and A. Shirazi, Microstructural Evolution and Mechanical Behaviors of Equal Channel Angular Pressed Copper, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 2019, 234(1), p 171–179.CrossRef R. Pourhamid and A. Shirazi, Microstructural Evolution and Mechanical Behaviors of Equal Channel Angular Pressed Copper, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., 2019, 234(1), p 171–179.CrossRef
19.
go back to reference G. Purcek, H. Yanar, M. Demirtas, Y. Alemdag, D.V. Shangina and S.V. Dobatkin, Optimization of Strength, Ductility and Electrical Conductivity of Cu–Cr–Zr Alloy by Combining Multi-Route ECAP and Aging, Mater. Sci. Eng. A, 2016, 649, p 114–122.CrossRef G. Purcek, H. Yanar, M. Demirtas, Y. Alemdag, D.V. Shangina and S.V. Dobatkin, Optimization of Strength, Ductility and Electrical Conductivity of Cu–Cr–Zr Alloy by Combining Multi-Route ECAP and Aging, Mater. Sci. Eng. A, 2016, 649, p 114–122.CrossRef
20.
go back to reference M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof and J. Sietsma, Microstructural Development During the Quenching and Partitioning Process in a Newly Designed Low-Carbon Steel, Acta Mater., 2011, 59(15), p 6059–6068.CrossRef M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof and J. Sietsma, Microstructural Development During the Quenching and Partitioning Process in a Newly Designed Low-Carbon Steel, Acta Mater., 2011, 59(15), p 6059–6068.CrossRef
21.
go back to reference P.K. Sarkar and S.K. Kakoty, Effect of Quenching Parameters on Mechanical Properties of Bell Metal, Mater. Today Proc., 2020, 44, p 4179–4183.CrossRef P.K. Sarkar and S.K. Kakoty, Effect of Quenching Parameters on Mechanical Properties of Bell Metal, Mater. Today Proc., 2020, 44, p 4179–4183.CrossRef
22.
go back to reference V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe and R.Z. Valiev, Influence of ECAP Routes on the Microstructure and Properties of Pure Ti, Mater. Sci. Eng. A, 2001, 299(1), p 59–67.CrossRef V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe and R.Z. Valiev, Influence of ECAP Routes on the Microstructure and Properties of Pure Ti, Mater. Sci. Eng. A, 2001, 299(1), p 59–67.CrossRef
23.
go back to reference T. Tański, P. Snopiński and W. Borek, Strength and Structure of AlMg3 Alloy After ECAP and Post-ECAP Processing, Mater. Manuf. Processes, 2017, 32(12), p 1368–1374.CrossRef T. Tański, P. Snopiński and W. Borek, Strength and Structure of AlMg3 Alloy After ECAP and Post-ECAP Processing, Mater. Manuf. Processes, 2017, 32(12), p 1368–1374.CrossRef
24.
go back to reference Y.-X. Zhang, Y.-P. Yi, S.-Q. Huang and F. Dong, Influence of Quenching Cooling Rate on Residual Stress and Tensile Properties of 2A14 Aluminum Alloy Forgings, Mater. Sci. Eng. A, 2016, 674, p 658–665.CrossRef Y.-X. Zhang, Y.-P. Yi, S.-Q. Huang and F. Dong, Influence of Quenching Cooling Rate on Residual Stress and Tensile Properties of 2A14 Aluminum Alloy Forgings, Mater. Sci. Eng. A, 2016, 674, p 658–665.CrossRef
25.
go back to reference M. Demirtaş, Processing of Grade a Low Carbon Steel by Equal Channel Angular Pressing, Nigde Omer Halisdemir Universitesi Mühendislik Bilimleri Dergisi, 2020, 9(1), p 557–564. M. Demirtaş, Processing of Grade a Low Carbon Steel by Equal Channel Angular Pressing, Nigde Omer Halisdemir Universitesi Mühendislik Bilimleri Dergisi, 2020, 9(1), p 557–564.
26.
go back to reference C. Ouchi, Development of Steel Plates by Intensive Use of TMCP and Direct Quenching Processes, ISIJ Int., 2001, 41(6), p 542–553.CrossRef C. Ouchi, Development of Steel Plates by Intensive Use of TMCP and Direct Quenching Processes, ISIJ Int., 2001, 41(6), p 542–553.CrossRef
27.
go back to reference P. Kumar, C. Xu and T.G. Langdon, Mechanical Characteristics of a Zn–22% Al Alloy Processed to Very High Strains by ECAP, Mater. Sci. Eng., A, 2006, 429(1–2), p 324–328.CrossRef P. Kumar, C. Xu and T.G. Langdon, Mechanical Characteristics of a Zn–22% Al Alloy Processed to Very High Strains by ECAP, Mater. Sci. Eng., A, 2006, 429(1–2), p 324–328.CrossRef
28.
go back to reference O. Saray, G. Purcek, I. Karaman, T. Neindorf and H.J. Maier, Equal-Channel Angular Sheet Extrusion of Interstitial-Free (IF) Steel: Microstructural Evolution and Mechanical Properties, Mater. Sci. Eng. A, 2011, 528(21), p 6573–6583.CrossRef O. Saray, G. Purcek, I. Karaman, T. Neindorf and H.J. Maier, Equal-Channel Angular Sheet Extrusion of Interstitial-Free (IF) Steel: Microstructural Evolution and Mechanical Properties, Mater. Sci. Eng. A, 2011, 528(21), p 6573–6583.CrossRef
29.
go back to reference J.K. Paik, H. Amlashi, B. Boon, K. Branner, P. Caridis, P. Das, M. Fujikubo, C.-H. Huang, L. Josefson and P. Kaeding. Committee III. 1 ultimate strength, 18th International Ship And Offshore Structures Congress. Schiffbautechnische Gesellschaft eV, 2012, p 285–363. J.K. Paik, H. Amlashi, B. Boon, K. Branner, P. Caridis, P. Das, M. Fujikubo, C.-H. Huang, L. Josefson and P. Kaeding. Committee III. 1 ultimate strength, 18th International Ship And Offshore Structures Congress. Schiffbautechnische Gesellschaft eV, 2012, p 285–363.
30.
go back to reference T.G. Langdon, The principles of grain refinement in equal-channel angular pressing, Mater. Sci. Eng., 2007, 462(1–2), p 3–11.CrossRef T.G. Langdon, The principles of grain refinement in equal-channel angular pressing, Mater. Sci. Eng., 2007, 462(1–2), p 3–11.CrossRef
31.
go back to reference M. Soleimani, H. Mirzadeh and C. Dehghanian, Phase Transformation Mechanism and Kinetics During Step Quenching of st37 Low Carbon Steel, Mater. Res. Express, 2019, 6(11), p 1165f1162.CrossRef M. Soleimani, H. Mirzadeh and C. Dehghanian, Phase Transformation Mechanism and Kinetics During Step Quenching of st37 Low Carbon Steel, Mater. Res. Express, 2019, 6(11), p 1165f1162.CrossRef
32.
go back to reference Z.Q. Fan, T. Hao, S.X. Zhao, G.N. Luo, C.S. Liu and Q.F. Fang, The Microstructure and Mechanical Properties of T91 Steel Processed by ECAP at Room Temperature, J. Nucl. Mater., 2013, 434(1), p 417–421.CrossRef Z.Q. Fan, T. Hao, S.X. Zhao, G.N. Luo, C.S. Liu and Q.F. Fang, The Microstructure and Mechanical Properties of T91 Steel Processed by ECAP at Room Temperature, J. Nucl. Mater., 2013, 434(1), p 417–421.CrossRef
33.
go back to reference P. Lehto, H. Remes, T. Saukkonen, H. Hänninen and J. Romanoff, Influence of Grain Size Distribution on the Hall–Petch Relationship of Welded Structural Steel, Mater. Sci. Eng. A, 2014, 592, p 28–39.CrossRef P. Lehto, H. Remes, T. Saukkonen, H. Hänninen and J. Romanoff, Influence of Grain Size Distribution on the Hall–Petch Relationship of Welded Structural Steel, Mater. Sci. Eng. A, 2014, 592, p 28–39.CrossRef
34.
go back to reference H.S. Kim, W.S. Ryu, M. Janecek, S.C. Baik and Y. Estrin, Effect of Equal Channel Angular Pressing on Microstructure and Mechanical Properties of IF Steel, Adv. Eng. Mater., 2005, 7(1–2), p 43–46.CrossRef H.S. Kim, W.S. Ryu, M. Janecek, S.C. Baik and Y. Estrin, Effect of Equal Channel Angular Pressing on Microstructure and Mechanical Properties of IF Steel, Adv. Eng. Mater., 2005, 7(1–2), p 43–46.CrossRef
35.
go back to reference T. Niendorf, D. Canadinc, H.J. Maier, I. Karaman and S.G. Sutter, On the Fatigue Behavior of Ultrafine-Grained Interstitial-Free Steel, Int. J. Mater. Res., 2006, 97(10), p 1328–1336.CrossRef T. Niendorf, D. Canadinc, H.J. Maier, I. Karaman and S.G. Sutter, On the Fatigue Behavior of Ultrafine-Grained Interstitial-Free Steel, Int. J. Mater. Res., 2006, 97(10), p 1328–1336.CrossRef
36.
go back to reference A. Belyakov, Y. Kimura and K. Tsuzaki, Recovery and Recrystallization in Ferritic Stainless Steel after Large Strain Deformation, Mater. Sci. Eng. A, 2005, 403(1), p 249–259.CrossRef A. Belyakov, Y. Kimura and K. Tsuzaki, Recovery and Recrystallization in Ferritic Stainless Steel after Large Strain Deformation, Mater. Sci. Eng. A, 2005, 403(1), p 249–259.CrossRef
37.
go back to reference W. Łojkowski, On the Spreading of Grain Boundary Dislocations and Its Effect on Grain Boundary Properties, Acta Metall. Mater., 1991, 39(8), p 1891–1899.CrossRef W. Łojkowski, On the Spreading of Grain Boundary Dislocations and Its Effect on Grain Boundary Properties, Acta Metall. Mater., 1991, 39(8), p 1891–1899.CrossRef
38.
go back to reference D.H. Shin, Plastic Flow Characteristics of Ultrafine Grained Low Carbon Steel During Tensile Deformation, Met. Mater. Int., 2001, 7(6), p 573–577.CrossRef D.H. Shin, Plastic Flow Characteristics of Ultrafine Grained Low Carbon Steel During Tensile Deformation, Met. Mater. Int., 2001, 7(6), p 573–577.CrossRef
39.
go back to reference V.M. Segal, Equal Channel Angular Extrusion: From Macromechanics to Structure Formation, Mater. Sci. Eng. A, 1999, 271(1), p 322–333.CrossRef V.M. Segal, Equal Channel Angular Extrusion: From Macromechanics to Structure Formation, Mater. Sci. Eng. A, 1999, 271(1), p 322–333.CrossRef
40.
go back to reference C. Xu, M. Furukawa, Z. Horita and T.G. Langdon, The Evolution of Homogeneity and Grain Refinement During Equal-Channel Angular Pressing: A Model for Grain Refinement in ECAP, Mater. Sci. Eng., A, 2005, 398(1), p 66–76.CrossRef C. Xu, M. Furukawa, Z. Horita and T.G. Langdon, The Evolution of Homogeneity and Grain Refinement During Equal-Channel Angular Pressing: A Model for Grain Refinement in ECAP, Mater. Sci. Eng., A, 2005, 398(1), p 66–76.CrossRef
41.
go back to reference Q. Xue, I.J. Beyerlein, D.J. Alexander and G.T. Gray, Mechanisms for Initial Grain Refinement in OFHC Copper During Equal Channel Angular Pressing, Acta Mater., 2007, 55(2), p 655–668.CrossRef Q. Xue, I.J. Beyerlein, D.J. Alexander and G.T. Gray, Mechanisms for Initial Grain Refinement in OFHC Copper During Equal Channel Angular Pressing, Acta Mater., 2007, 55(2), p 655–668.CrossRef
42.
go back to reference Y.T. Zhu and T.C. Lowe, Observations and Issues on Mechanisms of Grain Refinement During ECAP Process, Mater. Sci. Eng. A, 2000, 291(1), p 46–53.CrossRef Y.T. Zhu and T.C. Lowe, Observations and Issues on Mechanisms of Grain Refinement During ECAP Process, Mater. Sci. Eng. A, 2000, 291(1), p 46–53.CrossRef
43.
go back to reference P.K. Katiyar, S. Misra and K. Mondal, Comparative Corrosion Behavior of Five Microstructures (Pearlite, Bainite, Spheroidized, Martensite, and Tempered Martensite) Made from a High Carbon Steel, Metall. Mater. Trans. A., 2019, 50(3), p 1489–1501.CrossRef P.K. Katiyar, S. Misra and K. Mondal, Comparative Corrosion Behavior of Five Microstructures (Pearlite, Bainite, Spheroidized, Martensite, and Tempered Martensite) Made from a High Carbon Steel, Metall. Mater. Trans. A., 2019, 50(3), p 1489–1501.CrossRef
44.
go back to reference M. Soleimani, H. Mirzadeh and C. Dehghanian, Unraveling the Effect of Martensite Volume Fraction on the Mechanical and Corrosion Properties of Low-Carbon Dual-Phase Steel, Steel Res. Int., 2020, 91(2), p 1900327.CrossRef M. Soleimani, H. Mirzadeh and C. Dehghanian, Unraveling the Effect of Martensite Volume Fraction on the Mechanical and Corrosion Properties of Low-Carbon Dual-Phase Steel, Steel Res. Int., 2020, 91(2), p 1900327.CrossRef
45.
go back to reference W.R. Osório, L.C. Peixoto, L.R. Garcia and A. Garcia, Electrochemical Corrosion Response of a Low Carbon Heat Treated Steel in a NaCl Solution, Mater. Corros., 2009, 60(10), p 804–812.CrossRef W.R. Osório, L.C. Peixoto, L.R. Garcia and A. Garcia, Electrochemical Corrosion Response of a Low Carbon Heat Treated Steel in a NaCl Solution, Mater. Corros., 2009, 60(10), p 804–812.CrossRef
46.
go back to reference A. Di Schino and J.M. Kenny, Effects of the Grain Size on the Corrosion Behavior of Refined AISI 304 Austenitic Stainless Steels, J. Mater. Sci. Lett., 2002, 21(20), p 1631–1634.CrossRef A. Di Schino and J.M. Kenny, Effects of the Grain Size on the Corrosion Behavior of Refined AISI 304 Austenitic Stainless Steels, J. Mater. Sci. Lett., 2002, 21(20), p 1631–1634.CrossRef
47.
go back to reference M. Hasegawa and M. Osawa, Corrosion Behavior of Ultrafine Grained Austenitic Stainless Steel, Corrosion, 1984, 40(7), p 371–374.CrossRef M. Hasegawa and M. Osawa, Corrosion Behavior of Ultrafine Grained Austenitic Stainless Steel, Corrosion, 1984, 40(7), p 371–374.CrossRef
Metadata
Title
Effects of Heat Treatment and Severe Plastic Deformation on Microstructure, Mechanical Properties and Midsection Ultimate Strength of Shipbuilding Steel
Author
D. M. Sekban
Publication date
16-08-2021
Publisher
Springer US
Published in
Journal of Materials Engineering and Performance / Issue 10/2021
Print ISSN: 1059-9495
Electronic ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06114-3

Other articles of this Issue 10/2021

Journal of Materials Engineering and Performance 10/2021 Go to the issue

Premium Partners