Skip to main content
Top
Published in: Tribology Letters 2/2014

01-11-2014 | Original Paper

Effects of Interfacial Strength and Roughness on the Static Friction Coefficient

Authors: Deepak B. Patil, Melih Eriten

Published in: Tribology Letters | Issue 2/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A finite element model is used to simulate sliding inception of a rigid flat on a deformable sphere under combined normal and tangential loading. Sliding inception is treated as the loss of tangential contact stiffness under combined effects of plasticity, crack propagation and interfacial slip. Energy dissipation distribution is used to quantify the relative contribution of these mechanisms on the increased compliance during tangential loading. Materials with different strength and toughness properties, and varying local interface conditions ranging from fully adhered to finite friction, are studied to relate variations in plastic deformations, crack and slip to the sliding inception. For fully adhered contact condition, crack and fracture toughness have no effect on sliding inception, with plasticity, the dominant failure mechanism. A measure of recoverable strain (yield strength to Young’s modulus ratio) is found to be the most influential parameter in sliding inception. Interfacial slip is expectedly the dominant mechanism for sliding inception for lower coefficient of friction, modeling lubricated contacts. Interplay of plasticity and interfacial slip is found to govern the onset of sliding for higher local friction coefficients. Furthermore, the single asperity results are incorporated in a statistical model for nominally flat contacting rough surfaces under combined normal and tangential loading to investigate the stochastic effects due to surface roughness and material property uncertainties. The results show that the static coefficient of friction strongly depends on the normal load, material properties, local interfacial strength and roughness parameters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Cattaneo, C.: Sul contatto di due corpi elastici: distribuzione locale degli sforzi. Rendiconti Dell’Accademia Naz Dei Lincei 27, 342–348 (1938) Cattaneo, C.: Sul contatto di due corpi elastici: distribuzione locale degli sforzi. Rendiconti Dell’Accademia Naz Dei Lincei 27, 342–348 (1938)
2.
go back to reference Mindlin, R.D.: Compliance of elastic bodies in contact. J. Appl. Mech. 16, 259–268 (1949) Mindlin, R.D.: Compliance of elastic bodies in contact. J. Appl. Mech. 16, 259–268 (1949)
3.
go back to reference Etsion, I.: Revisiting the Cattaneo–Mindlin concept of interfacial slip in tangentially loaded compliant bodies. J. Tribol. 132, 020801–020809 (2010)CrossRef Etsion, I.: Revisiting the Cattaneo–Mindlin concept of interfacial slip in tangentially loaded compliant bodies. J. Tribol. 132, 020801–020809 (2010)CrossRef
4.
go back to reference Bowden, F.P., Leben, L.: The nature of sliding and the analysis of friction. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 169, 371–391 (1939)CrossRef Bowden, F.P., Leben, L.: The nature of sliding and the analysis of friction. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 169, 371–391 (1939)CrossRef
5.
go back to reference Bowden, F.P., Tabor, D.: The area of contact between stationary and between moving surfaces. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 169, 391–413 (1939)CrossRef Bowden, F.P., Tabor, D.: The area of contact between stationary and between moving surfaces. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 169, 391–413 (1939)CrossRef
6.
go back to reference Brizmer, V., Kligerman, Y., Etsion, I.: Elastic–plastic spherical contact under combined normal and tangential loading in full stick. Tribol. Lett. 25, 61–70 (2007)CrossRef Brizmer, V., Kligerman, Y., Etsion, I.: Elastic–plastic spherical contact under combined normal and tangential loading in full stick. Tribol. Lett. 25, 61–70 (2007)CrossRef
7.
go back to reference Kogut, L., Etsion, I.: A semi-analytical solution for the sliding inception of a spherical contact. J. Tribol. 125, 499–506 (2003)CrossRef Kogut, L., Etsion, I.: A semi-analytical solution for the sliding inception of a spherical contact. J. Tribol. 125, 499–506 (2003)CrossRef
8.
go back to reference Ovcharenko, A., Halperin, G., Etsion, I., Varenberg, M.: A novel test rig for in situ and real time optical measurement of the contact area evolution during pre-sliding of a spherical contact. Tribol. Lett. 23, 55–63 (2006)CrossRef Ovcharenko, A., Halperin, G., Etsion, I., Varenberg, M.: A novel test rig for in situ and real time optical measurement of the contact area evolution during pre-sliding of a spherical contact. Tribol. Lett. 23, 55–63 (2006)CrossRef
9.
go back to reference Zolotarevskiy, V., Kligerman, Y., Etsion, I.: The evolution of static friction for elastic-plastic spherical contact in pre-sliding. J. Tribol. 133, 034502 (2011)CrossRef Zolotarevskiy, V., Kligerman, Y., Etsion, I.: The evolution of static friction for elastic-plastic spherical contact in pre-sliding. J. Tribol. 133, 034502 (2011)CrossRef
10.
go back to reference Ovcharenko, A., Halperin, G., Verberne, G., Etsion, I.: In situ investigation of the contact area in elastic–plastic spherical contact during loading–unloading. Tribol. Lett. 25, 153–160 (2007)CrossRef Ovcharenko, A., Halperin, G., Verberne, G., Etsion, I.: In situ investigation of the contact area in elastic–plastic spherical contact during loading–unloading. Tribol. Lett. 25, 153–160 (2007)CrossRef
11.
go back to reference Jackson, R.L., Duvvuru, R.S., Meghani, H., Mahajan, M.: An analysis of elasto–plastic sliding spherical asperity interaction. Wear 262, 210–219 (2007)CrossRef Jackson, R.L., Duvvuru, R.S., Meghani, H., Mahajan, M.: An analysis of elasto–plastic sliding spherical asperity interaction. Wear 262, 210–219 (2007)CrossRef
12.
go back to reference Ben-David, O., Cohen, G., Fineberg, J.: The dynamics of the onset of frictional slip. Science 330, 211–214 (2010)CrossRef Ben-David, O., Cohen, G., Fineberg, J.: The dynamics of the onset of frictional slip. Science 330, 211–214 (2010)CrossRef
13.
go back to reference Ben-David, O., Fineberg, J.: Static friction coefficient is not a material constant. Phys. Rev. Lett. 106, 254301 (2011)CrossRef Ben-David, O., Fineberg, J.: Static friction coefficient is not a material constant. Phys. Rev. Lett. 106, 254301 (2011)CrossRef
14.
go back to reference Ben-David, O., Rubinstein, S.M., Fineberg, J.: Slip-stick and the evolution of frictional strength. Nature 463, 76–79 (2010)CrossRef Ben-David, O., Rubinstein, S.M., Fineberg, J.: Slip-stick and the evolution of frictional strength. Nature 463, 76–79 (2010)CrossRef
15.
go back to reference Rubinstein, S.M., Cohen, G., Fineberg, J.: Detachment fronts and the onset of dynamic friction. Nature 430, 1005–1009 (2004)CrossRef Rubinstein, S.M., Cohen, G., Fineberg, J.: Detachment fronts and the onset of dynamic friction. Nature 430, 1005–1009 (2004)CrossRef
16.
go back to reference Eriten, M., Polycarpou, A.A., Bergman, L.A.: Physics-based modeling for partial slip behavior of spherical contacts. Int. J. Solids Struct. 47, 2554–2567 (2010)CrossRef Eriten, M., Polycarpou, A.A., Bergman, L.A.: Physics-based modeling for partial slip behavior of spherical contacts. Int. J. Solids Struct. 47, 2554–2567 (2010)CrossRef
17.
go back to reference Wu, A., Shi, X., Polycarpou, A.A.: An elastic–plastic spherical contact model under combined normal and tangential loading. J. Appl. Mech. 79, 051001 (2012)CrossRef Wu, A., Shi, X., Polycarpou, A.A.: An elastic–plastic spherical contact model under combined normal and tangential loading. J. Appl. Mech. 79, 051001 (2012)CrossRef
18.
go back to reference Mulvihill, D.M., Kartal, M.E., Nowell, D., Hills, D.A.: An elastic–plastic asperity interaction model for sliding friction. Tribol. Int. 44, 1679–1694 (2011)CrossRef Mulvihill, D.M., Kartal, M.E., Nowell, D., Hills, D.A.: An elastic–plastic asperity interaction model for sliding friction. Tribol. Int. 44, 1679–1694 (2011)CrossRef
19.
go back to reference Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 295, 300–319 (1966)CrossRef Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 295, 300–319 (1966)CrossRef
20.
go back to reference Kogut, L., Etsion, I.: A static friction model for elastic-plastic contacting rough surfaces. J. Tribol. 126, 34–40 (2004)CrossRef Kogut, L., Etsion, I.: A static friction model for elastic-plastic contacting rough surfaces. J. Tribol. 126, 34–40 (2004)CrossRef
21.
go back to reference Cohen, D., Kligerman, Y., Etsion, I.: A model for contact and static friction of nominally flat rough surfaces under full stick contact condition. J. Tribol. 130, 31401 (2008)CrossRef Cohen, D., Kligerman, Y., Etsion, I.: A model for contact and static friction of nominally flat rough surfaces under full stick contact condition. J. Tribol. 130, 31401 (2008)CrossRef
22.
go back to reference Li, L., Ovcharenko, A., Etsion, I., Talke, F.: The effect of asperity flattening during cyclic normal loading of a rough spherical contact. Tribol. Lett. 40, 347–355 (2010)CrossRef Li, L., Ovcharenko, A., Etsion, I., Talke, F.: The effect of asperity flattening during cyclic normal loading of a rough spherical contact. Tribol. Lett. 40, 347–355 (2010)CrossRef
23.
go back to reference Eriten, M., Polycarpou, A.A., Bergman, L.A.: Physics-based modeling for fretting behavior of nominally flat rough surfaces. Int. J. Solids Struct. 48, 1436–1450 (2011)CrossRef Eriten, M., Polycarpou, A.A., Bergman, L.A.: Physics-based modeling for fretting behavior of nominally flat rough surfaces. Int. J. Solids Struct. 48, 1436–1450 (2011)CrossRef
24.
go back to reference Lee, C.-H., Eriten, M., Polycarpou, A.A.: Application of elastic-plastic static friction models to rough surfaces with asymmetric asperity distribution. J. Tribol. 132, 031602 (2010)CrossRef Lee, C.-H., Eriten, M., Polycarpou, A.A.: Application of elastic-plastic static friction models to rough surfaces with asymmetric asperity distribution. J. Tribol. 132, 031602 (2010)CrossRef
25.
go back to reference Björklund, S.: A random model for micro-slip between nominally flat surfaces. J. Tribol. 119, 726–732 (1997)CrossRef Björklund, S.: A random model for micro-slip between nominally flat surfaces. J. Tribol. 119, 726–732 (1997)CrossRef
26.
go back to reference Yu, N., Polycarpou, A.A.: Contact of rough surfaces with asymmetric distribution of asperity heights. J. Tribol. 124, 367–376 (2002) Yu, N., Polycarpou, A.A.: Contact of rough surfaces with asymmetric distribution of asperity heights. J. Tribol. 124, 367–376 (2002)
27.
go back to reference McFarlane, J.S., Tabor, D.: Relation between friction and adhesion. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 202, 244–253 (1950)CrossRef McFarlane, J.S., Tabor, D.: Relation between friction and adhesion. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 202, 244–253 (1950)CrossRef
28.
go back to reference ABAQUS Inc: Abaqus Theory Manual. Version V6.12 (2012) ABAQUS Inc: Abaqus Theory Manual. Version V6.12 (2012)
29.
go back to reference McCool, J.I.: Comparison of models for the contact of rough surfaces. Wear 107, 37–60 (1986)CrossRef McCool, J.I.: Comparison of models for the contact of rough surfaces. Wear 107, 37–60 (1986)CrossRef
30.
go back to reference Chandrasekar, S., Eriten, M., Polycarpou, A.A.: An improved model of asperity interaction in normal contact of rough surfaces. J. Appl. Mech. 80, 011025 (2012)CrossRef Chandrasekar, S., Eriten, M., Polycarpou, A.A.: An improved model of asperity interaction in normal contact of rough surfaces. J. Appl. Mech. 80, 011025 (2012)CrossRef
31.
go back to reference Chang, W.R., Etsion, I., Bogy, D.B.: Static friction coefficient model for metallic rough surfaces. J. Tribol. 110, 57–63 (1988)CrossRef Chang, W.R., Etsion, I., Bogy, D.B.: Static friction coefficient model for metallic rough surfaces. J. Tribol. 110, 57–63 (1988)CrossRef
32.
go back to reference Kikuchi, N., Oden, J.T.: Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM, Philadelphia (1988)CrossRef Kikuchi, N., Oden, J.T.: Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM, Philadelphia (1988)CrossRef
33.
go back to reference Berthe, D., Dowson, D., Godet, M., Taylor, C.M.: Tribological Design of Machine Elements. Elsevier, New York (1989) Berthe, D., Dowson, D., Godet, M., Taylor, C.M.: Tribological Design of Machine Elements. Elsevier, New York (1989)
34.
go back to reference Stolarski, T.: Tribology in Machine Design. Butterworth-Heinemann, London (1999) Stolarski, T.: Tribology in Machine Design. Butterworth-Heinemann, London (1999)
35.
go back to reference Hertz, H.: On the contact of elastic solids. J. Reine Angew. Math. 92, 110 (1881) Hertz, H.: On the contact of elastic solids. J. Reine Angew. Math. 92, 110 (1881)
36.
go back to reference Kogut, L., Etsion, I.: Elastic-plastic contact analysis of a sphere and a rigid flat. J. Appl. Mech. 69, 657–662 (2002)CrossRef Kogut, L., Etsion, I.: Elastic-plastic contact analysis of a sphere and a rigid flat. J. Appl. Mech. 69, 657–662 (2002)CrossRef
37.
go back to reference Brizmer, V., Kligerman, Y., Etsion, I.: The effect of contact conditions and material properties on the elasticity terminus of a spherical contact. Int. J. Solids Struct. 43, 5736–5749 (2006)CrossRef Brizmer, V., Kligerman, Y., Etsion, I.: The effect of contact conditions and material properties on the elasticity terminus of a spherical contact. Int. J. Solids Struct. 43, 5736–5749 (2006)CrossRef
38.
go back to reference ABAQUS Inc: Abaqus Analysis User’s Manual. Version V6.12 (2012) ABAQUS Inc: Abaqus Analysis User’s Manual. Version V6.12 (2012)
39.
go back to reference Perić, D., Owen, D.R.J.: Computational model for 3-D contact problems with friction based on the penalty method. Int. J. Numer. Methods Eng. 35, 1289–1309 (1992)CrossRef Perić, D., Owen, D.R.J.: Computational model for 3-D contact problems with friction based on the penalty method. Int. J. Numer. Methods Eng. 35, 1289–1309 (1992)CrossRef
40.
go back to reference Biotteau, E., Jean-Philippe, P.: Modeling frictional contact conditions with the penalty method in the extended finite element framework. In: ECCOMAS Proceedings, p. MS119, Vienna, Autriche (2012) Biotteau, E., Jean-Philippe, P.: Modeling frictional contact conditions with the penalty method in the extended finite element framework. In: ECCOMAS Proceedings, p. MS119, Vienna, Autriche (2012)
41.
go back to reference Qiu, X., Plesha, M.E., Meyer, D.W.: Stiffness matrix integration rules for contact-friction finite elements. Comput. Methods Appl. Mech. Eng. 93, 385–399 (1991)CrossRef Qiu, X., Plesha, M.E., Meyer, D.W.: Stiffness matrix integration rules for contact-friction finite elements. Comput. Methods Appl. Mech. Eng. 93, 385–399 (1991)CrossRef
42.
go back to reference Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987) Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)
43.
go back to reference Ashby, M.F., Jones, D.R.H.: Engineering Materials 1: An Introduction to Properties, Applications and Design. Butterworth-Heinemann, New York (2005) Ashby, M.F., Jones, D.R.H.: Engineering Materials 1: An Introduction to Properties, Applications and Design. Butterworth-Heinemann, New York (2005)
45.
go back to reference Ripling, E.J., Crosley, P.B.: Crack arrest fracture toughness of a structural steel (A36). Weld. Res. 65s–74s (1982) Ripling, E.J., Crosley, P.B.: Crack arrest fracture toughness of a structural steel (A36). Weld. Res. 65s–74s (1982)
46.
go back to reference Xue, K., Niu, L.-S., Shi, H.-J.: Mechanical properties of amorphous silicon carbide. In: Mukherjee, M. (ed.) Silicon Carbide—Materials, Processing and Applications in Electronic Devices. pp. 4–22. InTech (2011) Xue, K., Niu, L.-S., Shi, H.-J.: Mechanical properties of amorphous silicon carbide. In: Mukherjee, M. (ed.) Silicon Carbide—Materials, Processing and Applications in Electronic Devices. pp. 4–22. InTech (2011)
47.
go back to reference Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)CrossRef Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)CrossRef
48.
go back to reference Baietto, M.C., Pierres, E., Gravouil, A.: A multi-model X-FEM strategy dedicated to frictional crack growth under cyclic fretting fatigue loadings. Int. J. Solids Struct. 47, 1405–1423 (2010)CrossRef Baietto, M.C., Pierres, E., Gravouil, A.: A multi-model X-FEM strategy dedicated to frictional crack growth under cyclic fretting fatigue loadings. Int. J. Solids Struct. 47, 1405–1423 (2010)CrossRef
49.
go back to reference Giner, E., Sukumar, N., Denia, F.D., Fuenmayor, F.J.: Extended finite element method for fretting fatigue crack propagation. Int. J. Solids Struct. 45, 5675–5687 (2008)CrossRef Giner, E., Sukumar, N., Denia, F.D., Fuenmayor, F.J.: Extended finite element method for fretting fatigue crack propagation. Int. J. Solids Struct. 45, 5675–5687 (2008)CrossRef
50.
go back to reference Singh, I.V., Mishra, B.K., Bhattacharya, S., Patil, R.U.: The numerical simulation of fatigue crack growth using extended finite element method. Int. J. Fatigue 36, 109–119 (2012)CrossRef Singh, I.V., Mishra, B.K., Bhattacharya, S., Patil, R.U.: The numerical simulation of fatigue crack growth using extended finite element method. Int. J. Fatigue 36, 109–119 (2012)CrossRef
51.
52.
go back to reference Kirkhorn, L., Frogner, K., Andersson, M., Ståhl, J.E.: Improved tribotesting for sheet metal forming. Procedia CIRP 3, 507–512 (2012)CrossRef Kirkhorn, L., Frogner, K., Andersson, M., Ståhl, J.E.: Improved tribotesting for sheet metal forming. Procedia CIRP 3, 507–512 (2012)CrossRef
53.
go back to reference Bahrami, M., Yovanovich, M.M., Culham, J.R.: Thermal contact resistance at low contact pressure: effect of elastic deformation. Int. J. Heat Mass Transf. 48, 3284–3293 (2005)CrossRef Bahrami, M., Yovanovich, M.M., Culham, J.R.: Thermal contact resistance at low contact pressure: effect of elastic deformation. Int. J. Heat Mass Transf. 48, 3284–3293 (2005)CrossRef
54.
go back to reference Hendriks, C.P., Visscher, M.: Accurate real area of contact measurements on polyurethane. J. Tribol. 117, 607–611 (1995)CrossRef Hendriks, C.P., Visscher, M.: Accurate real area of contact measurements on polyurethane. J. Tribol. 117, 607–611 (1995)CrossRef
55.
go back to reference Uppal, A.H., Probert, S.D., Thomas, T.R.: The real area of contact between a rough and a flat surface. Wear 22, 163–183 (1972)CrossRef Uppal, A.H., Probert, S.D., Thomas, T.R.: The real area of contact between a rough and a flat surface. Wear 22, 163–183 (1972)CrossRef
56.
go back to reference Zou, M., Yu, B., Cai, J., Xu, P.: Fractal model for thermal contact conductance. J. Heat Transf. 130, 101301 (2008)CrossRef Zou, M., Yu, B., Cai, J., Xu, P.: Fractal model for thermal contact conductance. J. Heat Transf. 130, 101301 (2008)CrossRef
57.
go back to reference Williamson, J.B.P.: Paper 17: microtopography of surfaces. Proc. Inst. Mech. Eng. Conf. Proc. 182, 21–30 (1967) Williamson, J.B.P.: Paper 17: microtopography of surfaces. Proc. Inst. Mech. Eng. Conf. Proc. 182, 21–30 (1967)
58.
go back to reference Jackson, R.L., Green, I.: A finite element study of elasto-plastic hemispherical contact against a rigid flat. J. Tribol. 127, 343–354 (2005)CrossRef Jackson, R.L., Green, I.: A finite element study of elasto-plastic hemispherical contact against a rigid flat. J. Tribol. 127, 343–354 (2005)CrossRef
59.
go back to reference Burwell, J.T., Rabinowicz, E.: The nature of the coefficient of friction. J. Appl. Phys. 24, 136–139 (1953)CrossRef Burwell, J.T., Rabinowicz, E.: The nature of the coefficient of friction. J. Appl. Phys. 24, 136–139 (1953)CrossRef
60.
go back to reference Ovcharenko, A., Halperin, G., Etsion, I.: Experimental study of adhesive static friction in a spherical elastic-plastic contact. J. Tribol. 130, 021401 (2008)CrossRef Ovcharenko, A., Halperin, G., Etsion, I.: Experimental study of adhesive static friction in a spherical elastic-plastic contact. J. Tribol. 130, 021401 (2008)CrossRef
61.
go back to reference Marshall, M.B., Lewis, R., Dwyer-Joyce, R.S.: Characterisation of contact pressure distribution in bolted joints. Strain 42, 31–43 (2006)CrossRef Marshall, M.B., Lewis, R., Dwyer-Joyce, R.S.: Characterisation of contact pressure distribution in bolted joints. Strain 42, 31–43 (2006)CrossRef
62.
go back to reference Stephen, J.T., Marshall, M.B., Lewis, R.: An investigation into contact pressure distribution in bolted joints. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 0954406214528320 (2014) Stephen, J.T., Marshall, M.B., Lewis, R.: An investigation into contact pressure distribution in bolted joints. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 0954406214528320 (2014)
63.
go back to reference Gao, F., Furlong, O., Kotvis, P.V., Tysoe, W.T.: Pressure dependence of shear strengths of thin films on metal surfaces measured in ultrahigh vacuum. Tribol. Lett. 31, 99–106 (2008)CrossRef Gao, F., Furlong, O., Kotvis, P.V., Tysoe, W.T.: Pressure dependence of shear strengths of thin films on metal surfaces measured in ultrahigh vacuum. Tribol. Lett. 31, 99–106 (2008)CrossRef
64.
go back to reference Ibrahim Dickey, R.D., Jackson, R.L., Flowers, G.T.: Measurements of the static friction coefficient between tin surfaces and comparison to a theoretical model. J. Tribol. 133, 031408 (2011)CrossRef Ibrahim Dickey, R.D., Jackson, R.L., Flowers, G.T.: Measurements of the static friction coefficient between tin surfaces and comparison to a theoretical model. J. Tribol. 133, 031408 (2011)CrossRef
65.
go back to reference Zappone, B., Rosenberg, K.J., Israelachvili, J.: Role of nanometer roughness on the adhesion and friction of a rough polymer surface and a molecularly smooth mica surface. Tribol. Lett. 26, 191–201 (2007)CrossRef Zappone, B., Rosenberg, K.J., Israelachvili, J.: Role of nanometer roughness on the adhesion and friction of a rough polymer surface and a molecularly smooth mica surface. Tribol. Lett. 26, 191–201 (2007)CrossRef
66.
go back to reference Williams, J.A.: The behaviour of sliding contacts between non-conformal rough surfaces protected by “smart” films. Tribol. Lett. 17, 765–778 (2004)CrossRef Williams, J.A.: The behaviour of sliding contacts between non-conformal rough surfaces protected by “smart” films. Tribol. Lett. 17, 765–778 (2004)CrossRef
67.
go back to reference Zhou, R.S., Hashimoto, F.: A new rolling contact surface and “no run-in” performance bearings. J. Tribol. 117, 166–170 (1995)CrossRef Zhou, R.S., Hashimoto, F.: A new rolling contact surface and “no run-in” performance bearings. J. Tribol. 117, 166–170 (1995)CrossRef
68.
go back to reference Takakuwa, O., Kawaragi, Y., Soyama, H.: Estimation of the yield stress of stainless steel from the Vickers hardness taking account of the residual stress. J. Surf. Eng. Mater. Adv. Technol. 03, 262–268 (2013) Takakuwa, O., Kawaragi, Y., Soyama, H.: Estimation of the yield stress of stainless steel from the Vickers hardness taking account of the residual stress. J. Surf. Eng. Mater. Adv. Technol. 03, 262–268 (2013)
69.
go back to reference Yu, N., Pergande, S.R., Polycarpou, A.A.: Static friction model for rough surfaces with asymmetric distribution of asperity heights. J. Tribol. 126, 626–629 (2004)CrossRef Yu, N., Pergande, S.R., Polycarpou, A.A.: Static friction model for rough surfaces with asymmetric distribution of asperity heights. J. Tribol. 126, 626–629 (2004)CrossRef
70.
go back to reference Kim, T.W., Bhushan, B., Cho, Y.J.: The contact behavior of elastic/plastic non-Gaussian rough surfaces. Tribol. Lett. 22, 1–13 (2006)CrossRef Kim, T.W., Bhushan, B., Cho, Y.J.: The contact behavior of elastic/plastic non-Gaussian rough surfaces. Tribol. Lett. 22, 1–13 (2006)CrossRef
71.
go back to reference Kovacevic, R., Mohan, R., Zhang, Y.M.: Cutting force dynamics as a tool for surface profile monitoring in AWJ. J. Manuf. Sci. Eng. 117, 340–350 (1995) Kovacevic, R., Mohan, R., Zhang, Y.M.: Cutting force dynamics as a tool for surface profile monitoring in AWJ. J. Manuf. Sci. Eng. 117, 340–350 (1995)
Metadata
Title
Effects of Interfacial Strength and Roughness on the Static Friction Coefficient
Authors
Deepak B. Patil
Melih Eriten
Publication date
01-11-2014
Publisher
Springer US
Published in
Tribology Letters / Issue 2/2014
Print ISSN: 1023-8883
Electronic ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-014-0414-0

Other articles of this Issue 2/2014

Tribology Letters 2/2014 Go to the issue

Premium Partners