Skip to main content
Top

2017 | OriginalPaper | Chapter

Effects of Tidal Stream Energy Extraction on Water Exchange and Transport Timescales

Authors : Zhaoqing Yang, Taiping Wang

Published in: Marine Renewable Energy

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Over the last decade, many studies have been conducted to estimate the upper limit of the theoretical resource of tidal stream energy and its associated influence on volume flux. However, studies aimed at evaluating the effects of tidal energy extraction on water exchange and transport timescale have been limited. This chapter provides a detailed review of different methods—from analytical methods to advanced three-dimensional numerical models—for quantifying the far-field environmental impacts of tidal stream energy extraction. Case studies from an idealized tidal channel–bay system and a realistic site in the Tacoma Narrows of Puget Sound, Washington State, USA, are given to illustrate the modeling approach for assessing the impacts of tidal stream energy extraction on flushing time using a three-dimensional numerical model. Model results indicated that the change in flushing time is approximately linearly proportional to the volume flux reduction when the relative change in volume flux is small. However, the rate of change in flushing time is several times greater than that of volume flux reduction. The present study demonstrates that flushing time can be used as a unique parameter for quantifying the environmental impacts of tidal stream energy extraction on water exchange in coastal waters.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alexander, K. A., Potts, T., & Wilding, T. A. (2013). Marine renewable energy and Scottish west coast fishers: Exploring impacts, opportunities and potential mitigation. Ocean and Coastal Management, 75, 1–10.CrossRef Alexander, K. A., Potts, T., & Wilding, T. A. (2013). Marine renewable energy and Scottish west coast fishers: Exploring impacts, opportunities and potential mitigation. Ocean and Coastal Management, 75, 1–10.CrossRef
go back to reference Benjamins, S., Dale, A. C., Hastie, G., Waggitt, J. J., Lea, M. A., Scott, B., et al. (2015). Confusion reigns? A review of marine megafauna interactions with tidal-stream environments. Oceanography and Marine Biology: An Annual Review, 53(53), 1–54.CrossRef Benjamins, S., Dale, A. C., Hastie, G., Waggitt, J. J., Lea, M. A., Scott, B., et al. (2015). Confusion reigns? A review of marine megafauna interactions with tidal-stream environments. Oceanography and Marine Biology: An Annual Review, 53(53), 1–54.CrossRef
go back to reference Blanchfield, J., Garrett, C., Wild, P., & Rowe, A. (2008). The extractable power from a channel linking a bay to the open ocean. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 222, 289–297.CrossRef Blanchfield, J., Garrett, C., Wild, P., & Rowe, A. (2008). The extractable power from a channel linking a bay to the open ocean. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 222, 289–297.CrossRef
go back to reference Bryden, I. G., & Couch, S. J. (2007). How much energy can be extracted from moving water with a free surface: A question of importance in the field of tidal current energy? Renewable Energy, 32, 1961–1966.CrossRef Bryden, I. G., & Couch, S. J. (2007). How much energy can be extracted from moving water with a free surface: A question of importance in the field of tidal current energy? Renewable Energy, 32, 1961–1966.CrossRef
go back to reference Bryden, I. G., Couch, S. I., Owen, A., & Melville, G. (2007). Tidal current resource assessment. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 221, 125–135.CrossRef Bryden, I. G., Couch, S. I., Owen, A., & Melville, G. (2007). Tidal current resource assessment. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 221, 125–135.CrossRef
go back to reference Bryden, I. G., Grinsted, T., & Melville, G. T. (2004). Assessing the potential of a simple tidal channel to deliver useful energy. Applied Ocean Research, 26, 198–204.CrossRef Bryden, I. G., Grinsted, T., & Melville, G. T. (2004). Assessing the potential of a simple tidal channel to deliver useful energy. Applied Ocean Research, 26, 198–204.CrossRef
go back to reference Chen, C. S., Liu, H. D., & Beardsley, R. C. (2003). An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. Journal of Atmospheric and Oceanic Technology, 20, 159–186.CrossRef Chen, C. S., Liu, H. D., & Beardsley, R. C. (2003). An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. Journal of Atmospheric and Oceanic Technology, 20, 159–186.CrossRef
go back to reference Copping, A., Sather, N. H. L., Whiting, J., Zydlewski, G., Staines, G., Gill, A., et al. (2016). Annex IV 2016 state of the science report: Environmental effects of marine renewable energy development around the world. Ocean Energy Systems, Seattle WA, USA. Copping, A., Sather, N. H. L., Whiting, J., Zydlewski, G., Staines, G., Gill, A., et al. (2016). Annex IV 2016 state of the science report: Environmental effects of marine renewable energy development around the world. Ocean Energy Systems, Seattle WA, USA.
go back to reference Criales, M. M., Zink, I. C., Haus, B. K., Wylie, J., & Browder, J. A. (2013). Effect of turbulence on the behavior of pink shrimp postlarvae and implications for selective tidal stream transport behavior. Marine Ecology Progress Series, 477, 161–176.CrossRef Criales, M. M., Zink, I. C., Haus, B. K., Wylie, J., & Browder, J. A. (2013). Effect of turbulence on the behavior of pink shrimp postlarvae and implications for selective tidal stream transport behavior. Marine Ecology Progress Series, 477, 161–176.CrossRef
go back to reference Defne, Z., Haas, K. A., & Fritz, H. M. (2011). Numerical modeling of tidal currents and the effects of power extraction on estuarine hydrodynamics along the Georgia coast, USA. Renewable Energy, 36, 3461–3471.CrossRef Defne, Z., Haas, K. A., & Fritz, H. M. (2011). Numerical modeling of tidal currents and the effects of power extraction on estuarine hydrodynamics along the Georgia coast, USA. Renewable Energy, 36, 3461–3471.CrossRef
go back to reference Defne, Z., Haas, K. A., Fritz, H. M., Jiang, L. D., French, S. P., Shi, X., et al. (2012). National geodatabase of tidal stream power resource in USA. Renewable and Sustainable Energy Reviews, 16, 3326–3338.CrossRef Defne, Z., Haas, K. A., Fritz, H. M., Jiang, L. D., French, S. P., Shi, X., et al. (2012). National geodatabase of tidal stream power resource in USA. Renewable and Sustainable Energy Reviews, 16, 3326–3338.CrossRef
go back to reference Draper, S., Houlsby, G. T., Oldfield, M. L. G., & Borthwick, A. G. L. (2010). Modelling tidal energy extraction in a depth-averaged coastal domain. IET Renewable Power Generation, 4, 545–554.CrossRef Draper, S., Houlsby, G. T., Oldfield, M. L. G., & Borthwick, A. G. L. (2010). Modelling tidal energy extraction in a depth-averaged coastal domain. IET Renewable Power Generation, 4, 545–554.CrossRef
go back to reference Dyer, K. R. (1973). Estuaries: A Physical Introduction. New Yrok: Wiley. Dyer, K. R. (1973). Estuaries: A Physical Introduction. New Yrok: Wiley.
go back to reference Evans, P., Mason-Jones, A., Wilson, C., Wooldridge, C., O’Doherty, T., & O’Doherty, D. (2015). Constraints on extractable power from energetic tidal straits. Renewable Energy, 81, 707–722.CrossRef Evans, P., Mason-Jones, A., Wilson, C., Wooldridge, C., O’Doherty, T., & O’Doherty, D. (2015). Constraints on extractable power from energetic tidal straits. Renewable Energy, 81, 707–722.CrossRef
go back to reference Furness, R. W., Wade, H. M., Robbins, A. M. C., & Masden, E. A. (2012). Assessing the sensitivity of seabird populations to adverse effects from tidal stream turbines and wave energy devices. ICES Journal of Marine Science, 69, 1466–1479.CrossRef Furness, R. W., Wade, H. M., Robbins, A. M. C., & Masden, E. A. (2012). Assessing the sensitivity of seabird populations to adverse effects from tidal stream turbines and wave energy devices. ICES Journal of Marine Science, 69, 1466–1479.CrossRef
go back to reference Garrett, C., & Cummins, P. (2005). The power potential of tidal currents in channels. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 461, 2563–2572.MathSciNetCrossRefMATH Garrett, C., & Cummins, P. (2005). The power potential of tidal currents in channels. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 461, 2563–2572.MathSciNetCrossRefMATH
go back to reference Garrett, C., & Cummins, P. (2007). The efficiency of a turbine in a tidal channel. Journal of Fluid Mechanics, 588, 243–251.CrossRefMATH Garrett, C., & Cummins, P. (2007). The efficiency of a turbine in a tidal channel. Journal of Fluid Mechanics, 588, 243–251.CrossRefMATH
go back to reference Gove, B., Williams, L. J., Beresford, A. E., Roddis, P., Campbell, C., Teuten, E., et al. (2016). Reconciling biodiversity conservation and widespread deployment of renewable energy technologies in the uk. PLoS One 11. Gove, B., Williams, L. J., Beresford, A. E., Roddis, P., Campbell, C., Teuten, E., et al. (2016). Reconciling biodiversity conservation and widespread deployment of renewable energy technologies in the uk. PLoS One 11.
go back to reference Hakim, A. R., Cowles, G. W., & Churchill, J. H. (2013). The impact of tidal stream turbines on circulation and sediment transport in muskeget channel, MA. Marine Technology Society Journal, 47, 122–136.CrossRef Hakim, A. R., Cowles, G. W., & Churchill, J. H. (2013). The impact of tidal stream turbines on circulation and sediment transport in muskeget channel, MA. Marine Technology Society Journal, 47, 122–136.CrossRef
go back to reference Hammar, L., Eggertsen, L., Andersson, S., Ehnberg, J., Arvidsson, R., Gullstrom, M., et al. (2015). A probabilistic model for hydrokinetic turbine collision risks: Exploring impacts on fish. PLoS One 10. Hammar, L., Eggertsen, L., Andersson, S., Ehnberg, J., Arvidsson, R., Gullstrom, M., et al. (2015). A probabilistic model for hydrokinetic turbine collision risks: Exploring impacts on fish. PLoS One 10.
go back to reference Hasegawa, D., Sheng, J. Y., Greenberg, D. A., & Thompson, K. R. (2011). Far-field effects of tidal energy extraction in the Minas Passage on tidal circulation in the Bay of Fundy and Gulf of Maine using a nested-grid coastal circulation model. Ocean Dynamics, 61, 1845–1868.CrossRef Hasegawa, D., Sheng, J. Y., Greenberg, D. A., & Thompson, K. R. (2011). Far-field effects of tidal energy extraction in the Minas Passage on tidal circulation in the Bay of Fundy and Gulf of Maine using a nested-grid coastal circulation model. Ocean Dynamics, 61, 1845–1868.CrossRef
go back to reference Kadiri, M., Ahmadian, R., Bockelmann-Evans, B., Rauen, W., & Falconer, R. (2012). A review of the potential water quality impacts of tidal renewable energy systems. Renewable and Sustainable Energy Reviews, 16, 329–341.CrossRef Kadiri, M., Ahmadian, R., Bockelmann-Evans, B., Rauen, W., & Falconer, R. (2012). A review of the potential water quality impacts of tidal renewable energy systems. Renewable and Sustainable Energy Reviews, 16, 329–341.CrossRef
go back to reference Karsten, R. H., McMillan, I. M., Lickley, M. J., & Haynes, R. D. (2008). Assessment of tidal current energy in the Minas Passage, Bay of Fundy. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 222, 493–507.CrossRef Karsten, R. H., McMillan, I. M., Lickley, M. J., & Haynes, R. D. (2008). Assessment of tidal current energy in the Minas Passage, Bay of Fundy. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 222, 493–507.CrossRef
go back to reference Karsten, R., Swan, A. & Culina, J. (2013). Assessment of arrays of in-stream tidal turbines in the Bay of Fundy. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences 371. Karsten, R., Swan, A. & Culina, J. (2013). Assessment of arrays of in-stream tidal turbines in the Bay of Fundy. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences 371.
go back to reference Kilcher, K., Thresher, R. & Tinnesand, H. (2016). Marine Hydrokinetic Energy Site Identification and Ranking Methodology Part II: Tidal Energy. NREL/TP-5000-66079. National Renewable Energy Laboratory, Golden, CO. Kilcher, K., Thresher, R. & Tinnesand, H. (2016). Marine Hydrokinetic Energy Site Identification and Ranking Methodology Part II: Tidal Energy. NREL/TP-5000-66079. National Renewable Energy Laboratory, Golden, CO.
go back to reference Kuo, A. Y., & Neilson, B. J. (1988). A modified tidal prism model for water-quality in small coastal embayments. Water Science and Technology, 20, 133–142. Kuo, A. Y., & Neilson, B. J. (1988). A modified tidal prism model for water-quality in small coastal embayments. Water Science and Technology, 20, 133–142.
go back to reference Lo Brutto, O. A., Nguyen, T., Guillou, S. S., Thiebot, J., & Gualous, H. (2016). Tidal farm analysis using an analytical model for the flow velocity prediction in the wake of a tidal turbine with small diameter to depth ratio. Renewable Energy, 99, 347–359.CrossRef Lo Brutto, O. A., Nguyen, T., Guillou, S. S., Thiebot, J., & Gualous, H. (2016). Tidal farm analysis using an analytical model for the flow velocity prediction in the wake of a tidal turbine with small diameter to depth ratio. Renewable Energy, 99, 347–359.CrossRef
go back to reference Long, W., Jung, K. W., Yang, Z. Q., Copping, A., & Deng, Z. D. (2016). Coupled modeling of hydrodynamics and sound in coastal ocean for renewable ocean energy development. Marine Technology Society Journal, 50, 27–36.CrossRef Long, W., Jung, K. W., Yang, Z. Q., Copping, A., & Deng, Z. D. (2016). Coupled modeling of hydrodynamics and sound in coastal ocean for renewable ocean energy development. Marine Technology Society Journal, 50, 27–36.CrossRef
go back to reference Luketina, D. (1998). Simple tidal prism models revisited. Estuarine, Coastal and Shelf Science, 46, 77–84.CrossRef Luketina, D. (1998). Simple tidal prism models revisited. Estuarine, Coastal and Shelf Science, 46, 77–84.CrossRef
go back to reference Martin-Short, R., Hill, J., Kramer, S. C., Avdis, A., Allison, P. A., & Piggott, M. D. (2015). Tidal resource extraction in the Pentland Firth, UK: Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma. Renewable Energy, 76, 596–607.CrossRef Martin-Short, R., Hill, J., Kramer, S. C., Avdis, A., Allison, P. A., & Piggott, M. D. (2015). Tidal resource extraction in the Pentland Firth, UK: Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma. Renewable Energy, 76, 596–607.CrossRef
go back to reference Miller, R. G., Hutchison, Z. L., Macleod, A. K., Burrows, M. T., Cook, E. J., Last, K. S., et al. (2013). Marine renewable energy development: Assessing the Benthic footprint at multiple scales. Frontiers in Ecology and the Environment, 11, 433–440.CrossRef Miller, R. G., Hutchison, Z. L., Macleod, A. K., Burrows, M. T., Cook, E. J., Last, K. S., et al. (2013). Marine renewable energy development: Assessing the Benthic footprint at multiple scales. Frontiers in Ecology and the Environment, 11, 433–440.CrossRef
go back to reference Myers, L., & Bahaj, A. S. (2005). Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race. Renewable Energy, 30, 1713–1731.CrossRef Myers, L., & Bahaj, A. S. (2005). Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race. Renewable Energy, 30, 1713–1731.CrossRef
go back to reference Nash, S., O’Brien, N., Olbert, A., & Hartnett, M. (2014). Modelling the far field hydro-environmental impacts of tidal farms—A focus on tidal regime, inter-tidal zones and flushing. Computers and Geosciences, 71, 20–27.CrossRef Nash, S., O’Brien, N., Olbert, A., & Hartnett, M. (2014). Modelling the far field hydro-environmental impacts of tidal farms—A focus on tidal regime, inter-tidal zones and flushing. Computers and Geosciences, 71, 20–27.CrossRef
go back to reference Neill, S. P., Litt, E. J., Couch, S. J., & Davies, A. G. (2009). The impact of tidal stream turbines on large-scale sediment dynamics. Renewable Energy, 34, 2803–2812.CrossRef Neill, S. P., Litt, E. J., Couch, S. J., & Davies, A. G. (2009). The impact of tidal stream turbines on large-scale sediment dynamics. Renewable Energy, 34, 2803–2812.CrossRef
go back to reference Officer, C. B. (1976). Physical Oceanography of Estuaries (and Associated Coastal Waters). New York: Wiley. Officer, C. B. (1976). Physical Oceanography of Estuaries (and Associated Coastal Waters). New York: Wiley.
go back to reference Pacheco, A., & Ferreira, O. (2016). Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario. Applied Energy, 180, 369–385.CrossRef Pacheco, A., & Ferreira, O. (2016). Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario. Applied Energy, 180, 369–385.CrossRef
go back to reference Polagye, B., Kawase, M., & Malte, P. (2009). In-stream tidal energy potential of Puget Sound, Washington. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 223, 571–587.CrossRef Polagye, B., Kawase, M., & Malte, P. (2009). In-stream tidal energy potential of Puget Sound, Washington. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 223, 571–587.CrossRef
go back to reference Polagye, B. L., & Malte, P. C. (2011). Far-field dynamics of tidal energy extraction in channel networks. Renewable Energy, 36, 222–234.CrossRef Polagye, B. L., & Malte, P. C. (2011). Far-field dynamics of tidal energy extraction in channel networks. Renewable Energy, 36, 222–234.CrossRef
go back to reference Polagye, B., Malte, P., Kawasel, M., & Durran, D. (2008). Effect of large-scale kinetic power extraction on time-dependent estuaries. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 222, 471–484.CrossRef Polagye, B., Malte, P., Kawasel, M., & Durran, D. (2008). Effect of large-scale kinetic power extraction on time-dependent estuaries. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 222, 471–484.CrossRef
go back to reference Rao, S., Xue, H. J., Bao, M., & Funke, S. (2016). Determining tidal turbine farm efficiency in the western passage using the disc actuator theory. Ocean Dynamics, 66, 41–57.CrossRef Rao, S., Xue, H. J., Bao, M., & Funke, S. (2016). Determining tidal turbine farm efficiency in the western passage using the disc actuator theory. Ocean Dynamics, 66, 41–57.CrossRef
go back to reference Roc, T., Greaves, D., Thyng, K. M., & Conley, D. C. (2014). Tidal turbine representation in an ocean circulation model: Towards realistic applications. Ocean Engineering, 78, 95–111.CrossRef Roc, T., Greaves, D., Thyng, K. M., & Conley, D. C. (2014). Tidal turbine representation in an ocean circulation model: Towards realistic applications. Ocean Engineering, 78, 95–111.CrossRef
go back to reference Roche, R. C., Walker-Springett, K., Robins, R. E., Jones, J., Veneruso, G., Whitton, T. A., et al. (2016). Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK). Renewable Energy, 99, 1327–1341.CrossRef Roche, R. C., Walker-Springett, K., Robins, R. E., Jones, J., Veneruso, G., Whitton, T. A., et al. (2016). Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK). Renewable Energy, 99, 1327–1341.CrossRef
go back to reference Sanford, L. P., Boicourt, W. C., & Rives, S. R. (1992). Model for estimating tidal flushing of small embayments. Journal of Waterway Port Coastal and Ocean Engineering-Asce, 118, 635–654.CrossRef Sanford, L. P., Boicourt, W. C., & Rives, S. R. (1992). Model for estimating tidal flushing of small embayments. Journal of Waterway Port Coastal and Ocean Engineering-Asce, 118, 635–654.CrossRef
go back to reference Schlezinger, D. R., Taylor, C. D., & Howes, B. L. (2013). Assessment of zooplankton injury and mortality associated with underwater turbines for tidal energy production. Marine Technology Society Journal, 47, 142–150.CrossRef Schlezinger, D. R., Taylor, C. D., & Howes, B. L. (2013). Assessment of zooplankton injury and mortality associated with underwater turbines for tidal energy production. Marine Technology Society Journal, 47, 142–150.CrossRef
go back to reference Shapiro, G. I. (2011). Effect of tidal stream power generation on the region-wide circulation in a shallow sea. Ocean Science, 7, 165–174.CrossRef Shapiro, G. I. (2011). Effect of tidal stream power generation on the region-wide circulation in a shallow sea. Ocean Science, 7, 165–174.CrossRef
go back to reference Shields, M. A., Woolf, D. K., Grist, E. P. M., Kerr, S. A., Jackson, A. C., Harris, R. E., et al. (2011). Marine renewable energy: The ecological implications of altering the hydrodynamics of the marine environment. Ocean and Coastal Management, 54, 2–9.CrossRef Shields, M. A., Woolf, D. K., Grist, E. P. M., Kerr, S. A., Jackson, A. C., Harris, R. E., et al. (2011). Marine renewable energy: The ecological implications of altering the hydrodynamics of the marine environment. Ocean and Coastal Management, 54, 2–9.CrossRef
go back to reference Sutherland, G., Foreman, M., & Garrett, C. (2007). Tidal current energy assessment for Johnstone Strait, Vancouver Island. Proceedings of the Institution of Mechanical Engineers Part A—Journal of Power and Energy, 221, 147–157.CrossRef Sutherland, G., Foreman, M., & Garrett, C. (2007). Tidal current energy assessment for Johnstone Strait, Vancouver Island. Proceedings of the Institution of Mechanical Engineers Part A—Journal of Power and Energy, 221, 147–157.CrossRef
go back to reference Thiebot, J., du Bois, P. B., & Guillou, S. (2015). Numerical modeling of the effect of tidal stream turbines on the hydrodynamics and the sediment transport—Application to the Alderney Race (Raz Blanchard), France. Renewable Energy, 75, 356–365.CrossRef Thiebot, J., du Bois, P. B., & Guillou, S. (2015). Numerical modeling of the effect of tidal stream turbines on the hydrodynamics and the sediment transport—Application to the Alderney Race (Raz Blanchard), France. Renewable Energy, 75, 356–365.CrossRef
go back to reference van der Molen, J., Ruardij, P., & Greenwood, N. (2016). Potential environmental impact of tidal energy extraction in the Pentland Firth at large spatial scales: Results of a biogeochemical model. Biogeosciences, 13, 2593–2609.CrossRef van der Molen, J., Ruardij, P., & Greenwood, N. (2016). Potential environmental impact of tidal energy extraction in the Pentland Firth at large spatial scales: Results of a biogeochemical model. Biogeosciences, 13, 2593–2609.CrossRef
go back to reference VanZwieten, J., McAnally,W., Ahmad, J., Davis, T., Martin, J., Bevelhimer, M., et al. (2015). In-stream hydrokinetic power: review and appraisal. Journal of Energy Engineering 141. VanZwieten, J., McAnally,W., Ahmad, J., Davis, T., Martin, J., Bevelhimer, M., et al. (2015). In-stream hydrokinetic power: review and appraisal. Journal of Energy Engineering 141.
go back to reference Venugopal, V. & Nemalidinne, R. (2014). Marine energy resource assessment for orkney and pentland waters with a coupled wave and tidal flow model. 33rd International Conference on Ocean, Offshore and Arctic Engineering, 2014 (Vol. 9b). Venugopal, V. & Nemalidinne, R. (2014). Marine energy resource assessment for orkney and pentland waters with a coupled wave and tidal flow model. 33rd International Conference on Ocean, Offshore and Arctic Engineering, 2014 (Vol. 9b).
go back to reference Wang, C. F., Hsu, M. H., & Kuo, A. Y. (2004). Residence time of the Danshuei River estuary. Taiwan. Estuarine Coastal and Shelf Science, 60, 381–393.CrossRef Wang, C. F., Hsu, M. H., & Kuo, A. Y. (2004). Residence time of the Danshuei River estuary. Taiwan. Estuarine Coastal and Shelf Science, 60, 381–393.CrossRef
go back to reference Wang, T. P., Yang, Z. Q., & Copping, A. (2015). A modeling study of the potential water quality impacts from in-stream tidal energy extraction. Estuaries and Coasts, 38, S173–S186.CrossRef Wang, T. P., Yang, Z. Q., & Copping, A. (2015). A modeling study of the potential water quality impacts from in-stream tidal energy extraction. Estuaries and Coasts, 38, S173–S186.CrossRef
go back to reference Ward, J., Schultz, I., Woodruff, D., Roesijadi, G. & Copping, A. (2010). Assessing the effects of marine and hydrokinetic energy development on marine and estuarine resources. Oceans 2010. Ward, J., Schultz, I., Woodruff, D., Roesijadi, G. & Copping, A. (2010). Assessing the effects of marine and hydrokinetic energy development on marine and estuarine resources. Oceans 2010.
go back to reference Williamson, B. J., Blondel, P., Armstrong, E., Bell, P. S., Hall, C., Waggitt, J. J., et al. (2016). A Self-Contained subsea platform for acoustic monitoring of the environment around marine renewable energy devices-field deployments at wave and tidal energy sites in Orkney, Scotland. IEEE Journal of Oceanic Engineering, 41, 67–81.CrossRef Williamson, B. J., Blondel, P., Armstrong, E., Bell, P. S., Hall, C., Waggitt, J. J., et al. (2016). A Self-Contained subsea platform for acoustic monitoring of the environment around marine renewable energy devices-field deployments at wave and tidal energy sites in Orkney, Scotland. IEEE Journal of Oceanic Engineering, 41, 67–81.CrossRef
go back to reference Wood, T. (1979). Modification of existing simple segmented tidal prism models of mixing in estuaries. Estuarine and Coastal Marine Science, 8, 339–347.CrossRef Wood, T. (1979). Modification of existing simple segmented tidal prism models of mixing in estuaries. Estuarine and Coastal Marine Science, 8, 339–347.CrossRef
go back to reference Work, P. A., Haas, K. A., Defne, Z., & Gay, T. (2013). Tidal stream energy site assessment via three-dimensional model and measurements. Applied Energy, 102, 510–519.CrossRef Work, P. A., Haas, K. A., Defne, Z., & Gay, T. (2013). Tidal stream energy site assessment via three-dimensional model and measurements. Applied Energy, 102, 510–519.CrossRef
go back to reference Yang, Z. Q., & Khangaonkar, T. (2010). Multi-scale modeling of Puget Sound using an unstructured-grid coastal ocean model: From tide flats to estuaries and coastal waters. Ocean Dynamics, 60, 1621–1637.CrossRef Yang, Z. Q., & Khangaonkar, T. (2010). Multi-scale modeling of Puget Sound using an unstructured-grid coastal ocean model: From tide flats to estuaries and coastal waters. Ocean Dynamics, 60, 1621–1637.CrossRef
go back to reference Yang, Z. Q., & Wang, T. P. (2015). Modeling the effects of tidal energy extraction on estuarine hydrodynamics in a stratified estuary. Estuaries and Coasts, 38, S187–S202.CrossRef Yang, Z. Q., & Wang, T. P. (2015). Modeling the effects of tidal energy extraction on estuarine hydrodynamics in a stratified estuary. Estuaries and Coasts, 38, S187–S202.CrossRef
go back to reference Yang, Z. Q., Wang, T. P., & Copping, A. E. (2013). Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model. Renewable Energy, 50, 605–613.CrossRef Yang, Z. Q., Wang, T. P., & Copping, A. E. (2013). Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model. Renewable Energy, 50, 605–613.CrossRef
go back to reference Yang, Z. Q., Wang, T. P., Copping, A., & Geerlofs, S. (2014). Modeling of in-stream tidal energy development and its potential effects in Tacoma Narrows, Washington, USA. Ocean and Coastal Management, 99, 52–62.CrossRef Yang, Z. Q., Wang, T. P., Copping, A., & Geerlofs, S. (2014). Modeling of in-stream tidal energy development and its potential effects in Tacoma Narrows, Washington, USA. Ocean and Coastal Management, 99, 52–62.CrossRef
Metadata
Title
Effects of Tidal Stream Energy Extraction on Water Exchange and Transport Timescales
Authors
Zhaoqing Yang
Taiping Wang
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-53536-4_11