Skip to main content
Top

2017 | OriginalPaper | Chapter

Marine Hydrokinetic Energy in the Gulf Stream Off North Carolina: An Assessment Using Observations and Ocean Circulation Models

Authors : Caroline F. Lowcher, Michael Muglia, John M. Bane, Ruoying He, Yanlin Gong, Sara M. Haines

Published in: Marine Renewable Energy

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

There has been global interest in renewable energy for meeting energy demands, and as these demands increase, it will become of greater importance to utilize low-carbon energy sources to mitigate anthropogenic impact on the environment. Onshore hydropower is responsible for half of the electricity generated by a renewable source in the USA. In the ocean, marine hydrokinetic (MHK) energy in western boundary currents (WBCs) can be considered for electricity generation by submarine turbines. WBCs are a continuous and sustainable source of energy that could be transmitted to shore to support coastal communities in future years. The Gulf Stream is the WBC of the North Atlantic subtropical gyre, and it flows for part of its course along the upper continental slope off the southeastern USA. This large-scale current has maximum flow speeds exceeding 2 m s−1, and this together with its proximity to the coastline distinguishes it as a potential source of MHK energy. Using current data from a moored acoustic Doppler current profiler (ADCP) and a regional ocean circulation model, MHK power densities offshore of North Carolina were found to average 798 W m−2 for the ADCP and 641 W m−2 for the model during a nine-month period at a potential turbine site, a difference of about 20%. The model was shown to have similar current speeds to the ADCP for slowly varying currents (fluctuations of weeks to months due to Gulf Stream path shifts), and lower speeds for higher frequency current variations (fluctuations of several days to a couple of weeks due to wavelike Gulf Stream meanders). This article considers the Gulf Stream as a prospective renewable energy source and assesses the power density of this WBC at multiple locations offshore of North Carolina. Understanding the Stream’s power density character, including its spatial and temporal variations along the North Carolina coast, is essential in considering the Gulf Stream as a future alternative energy resource.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Bane, J. M., Brooks, D. A., & Lorenson, K. R. (1981). Synoptic observations of the three-dimensional structure and propagation of Gulf Stream meanders along the Carolina continental margin. Journal of Geophysical Research, 86, 6411–6425.CrossRef Bane, J. M., Brooks, D. A., & Lorenson, K. R. (1981). Synoptic observations of the three-dimensional structure and propagation of Gulf Stream meanders along the Carolina continental margin. Journal of Geophysical Research, 86, 6411–6425.CrossRef
go back to reference Bane, J. M., & Dewar, W. K. (1988). Gulf Stream bimodality and variability downstream of the Charleston bump. Journal of Geophysical Research, 93, 6695–6710.CrossRef Bane, J. M., & Dewar, W. K. (1988). Gulf Stream bimodality and variability downstream of the Charleston bump. Journal of Geophysical Research, 93, 6695–6710.CrossRef
go back to reference Barringer, M. O., & Larsen, J. C. (2001). Sixteen years of Florida current transport at 27° N. Geophysical Reseach Letters, 28, 3179–3182.CrossRef Barringer, M. O., & Larsen, J. C. (2001). Sixteen years of Florida current transport at 27° N. Geophysical Reseach Letters, 28, 3179–3182.CrossRef
go back to reference Boehlert, G. W., & Gill, A. B. (2010). Environmental and ecological effects of ocean renewable energy development: a current synthesis. Oceanography, 23, 68–81.CrossRef Boehlert, G. W., & Gill, A. B. (2010). Environmental and ecological effects of ocean renewable energy development: a current synthesis. Oceanography, 23, 68–81.CrossRef
go back to reference Brown, A., Beiter, P., Heimiller, D., Davidson, C., Denholm, P, Melius, J., et al. (2015). Estimating renewable energy economic potential in the United States: methodology and initial results. Tech. Rep. NREL/TP-6A20-64503, Natl. Renew. Energy Lab, Golden, CO. Brown, A., Beiter, P., Heimiller, D., Davidson, C., Denholm, P, Melius, J., et al. (2015). Estimating renewable energy economic potential in the United States: methodology and initial results. Tech. Rep. NREL/TP-6A20-64503, Natl. Renew. Energy Lab, Golden, CO.
go back to reference Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R., Hogan, P. J., Wallcraft, A. J., et al. (2007). The HYCOM (Hybrid Coordinate Ocean Model) data assimilative system. Journal of Marine Systems, 65, 60–83.CrossRef Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R., Hogan, P. J., Wallcraft, A. J., et al. (2007). The HYCOM (Hybrid Coordinate Ocean Model) data assimilative system. Journal of Marine Systems, 65, 60–83.CrossRef
go back to reference Corren, D., Hughes, S., Paquette, J., Sotiropoulos, F., & Calkins, J. (2013). Improved structure and fabrication of large, high-power KHPS rotors. Tech. Rep. DOE/GO18168, Verdant Power, New York, NY. Corren, D., Hughes, S., Paquette, J., Sotiropoulos, F., & Calkins, J. (2013). Improved structure and fabrication of large, high-power KHPS rotors. Tech. Rep. DOE/GO18168, Verdant Power, New York, NY.
go back to reference Gong, Y., He, R., Gawarkiewicz, G. G., & Savidge, D. K. (2015). Numerical investigation of coastal circulation dynamics near Cape Hatteras, North Carolina, in January 2005. Ocean Dynamics, 65, 1–15.CrossRef Gong, Y., He, R., Gawarkiewicz, G. G., & Savidge, D. K. (2015). Numerical investigation of coastal circulation dynamics near Cape Hatteras, North Carolina, in January 2005. Ocean Dynamics, 65, 1–15.CrossRef
go back to reference Halkin, D., & Rossby, T. (1985). The structure and transport of the Gulf Stream at 73° W. Journal of Physical Oceanography, 15, 1439–1452.CrossRef Halkin, D., & Rossby, T. (1985). The structure and transport of the Gulf Stream at 73° W. Journal of Physical Oceanography, 15, 1439–1452.CrossRef
go back to reference Imawaki, S., Bower. A., Beal, L., & Qiu, B. (2013). Western boundary currents. In G. Siedler., S. M. Grifies., J. Gould & J. A. Church (Eds.), Ocean Circulation and Climate: A 21st Century Perspective, 2nd ed. (pp. 305–38).Oxford, UK: Academic. Imawaki, S., Bower. A., Beal, L., & Qiu, B. (2013). Western boundary currents. In G. Siedler., S. M. Grifies., J. Gould & J. A. Church (Eds.), Ocean Circulation and Climate: A 21st Century Perspective, 2nd ed. (pp. 305–38).Oxford, UK: Academic.
go back to reference Li, B., Bane, J., DeCarolis, J. F., Neary, V., de Queiroz, A. R., & Keeler, A. G. (2017). The economics of ocean current energy: a Gulf stream case study. Submitted to Nature Energy. Li, B., Bane, J., DeCarolis, J. F., Neary, V., de Queiroz, A. R., & Keeler, A. G. (2017). The economics of ocean current energy: a Gulf stream case study. Submitted to Nature Energy.
go back to reference Luettich, R. A., Birkhahn, R. H., & Westerink, J. J. (1991). Application of ADCIRC-2DDI to Masonboro Inlet, North Carolina: A brief numerical modeling study, Contractors Report to the US Army Engineer Waterways Experiment Station, August 1991. Luettich, R. A., Birkhahn, R. H., & Westerink, J. J. (1991). Application of ADCIRC-2DDI to Masonboro Inlet, North Carolina: A brief numerical modeling study, Contractors Report to the US Army Engineer Waterways Experiment Station, August 1991.
go back to reference Mellor, G. L., & Yamada, T. (1982). Development of a turbulence closer model for geophysical fluid problems. Reviews of Geophysics, 20, 851–875.CrossRef Mellor, G. L., & Yamada, T. (1982). Development of a turbulence closer model for geophysical fluid problems. Reviews of Geophysics, 20, 851–875.CrossRef
go back to reference Miller, J. L. (1994). Fluctuations of Gulf Stream frontal position between Cape Hatteras cand the Straits of Florida. Journal Geophysical Research, 99, 5057–5064.CrossRef Miller, J. L. (1994). Fluctuations of Gulf Stream frontal position between Cape Hatteras cand the Straits of Florida. Journal Geophysical Research, 99, 5057–5064.CrossRef
go back to reference National Renewable Energy Laboratory. (2012). Renewable Electricity Futures Study. Hand, M. M., Baldwin, S., DeMeo, E., Reilly, J. M., Mai, T., Arent, D., Porro, G., Meshek, M., Sandor, D. (Eds.), 4 vols. NREL/TP-6A20-52409. Golden, CO: National Renewable Energy Laboratory. National Renewable Energy Laboratory. (2012). Renewable Electricity Futures Study. Hand, M. M., Baldwin, S., DeMeo, E., Reilly, J. M., Mai, T., Arent, D., Porro, G., Meshek, M., Sandor, D. (Eds.), 4 vols. NREL/TP-6A20-52409. Golden, CO: National Renewable Energy Laboratory.
go back to reference Neary, V. S., Previsic, M., Jepsen, R. A., Lawson, M. J., Yu, Y.-H., et al. (2014). Reference model 4 (RM4): ocean current turbine. In V. Neary, M. Previsic, R. A. Jepsen, M. J. Lawson, Y.-H. Yu, et al. (Eds.), Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies (pp. 180–228). Albuquerque, NM: Sandia Natl. Lab. Neary, V. S., Previsic, M., Jepsen, R. A., Lawson, M. J., Yu, Y.-H., et al. (2014). Reference model 4 (RM4): ocean current turbine. In V. Neary, M. Previsic, R. A. Jepsen, M. J. Lawson, Y.-H. Yu, et al. (Eds.), Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies (pp. 180–228). Albuquerque, NM: Sandia Natl. Lab.
go back to reference Quattrocchi, G., Pierini, S., & Dijkstra, H. A. (2012). Intrinsic low-frequency variability of the Gulf Stream. Nonlinear Processes in Geophysics, 19, 155–164.CrossRef Quattrocchi, G., Pierini, S., & Dijkstra, H. A. (2012). Intrinsic low-frequency variability of the Gulf Stream. Nonlinear Processes in Geophysics, 19, 155–164.CrossRef
go back to reference Richardson, P. L. (1977). On the crossover between the Gulf Stream and the Western Boundary Undercurrent. Deep Sea Research, 24, 139–159.CrossRef Richardson, P. L. (1977). On the crossover between the Gulf Stream and the Western Boundary Undercurrent. Deep Sea Research, 24, 139–159.CrossRef
go back to reference Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional ocean modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9, 347–404.CrossRef Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional ocean modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9, 347–404.CrossRef
go back to reference Tracey, K. L., & Watts, D. R. (1986). On Gulf Stream meander characteristics near Cape Hatteras. Journal Geophysical Research, 91, 7587–7602.CrossRef Tracey, K. L., & Watts, D. R. (1986). On Gulf Stream meander characteristics near Cape Hatteras. Journal Geophysical Research, 91, 7587–7602.CrossRef
go back to reference VanZwieten, J., McAnally, W., Ahmad, J., Davis, T., Martin, J., Bevelhimer, M., et al. (2014). In-stream hydrokinetic power: review and appraisal. The Journal of Energy Engineering, 141, 04014024.CrossRef VanZwieten, J., McAnally, W., Ahmad, J., Davis, T., Martin, J., Bevelhimer, M., et al. (2014). In-stream hydrokinetic power: review and appraisal. The Journal of Energy Engineering, 141, 04014024.CrossRef
go back to reference Webster, F. (1961). A description of Gulf Stream meanders off Onslow Bay. Deep Sea Research, 9, 130–143.CrossRef Webster, F. (1961). A description of Gulf Stream meanders off Onslow Bay. Deep Sea Research, 9, 130–143.CrossRef
go back to reference Yang, X., Haas, K. A., & Fritz, H. M. (2014). Evaluating the potential for energy extraction from turbines in the Gulf Stream system. Renewable Energy, 72, 12–21.CrossRef Yang, X., Haas, K. A., & Fritz, H. M. (2014). Evaluating the potential for energy extraction from turbines in the Gulf Stream system. Renewable Energy, 72, 12–21.CrossRef
Metadata
Title
Marine Hydrokinetic Energy in the Gulf Stream Off North Carolina: An Assessment Using Observations and Ocean Circulation Models
Authors
Caroline F. Lowcher
Michael Muglia
John M. Bane
Ruoying He
Yanlin Gong
Sara M. Haines
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-53536-4_10