Skip to main content
Top

2017 | OriginalPaper | Chapter

Ocean Current Energy Resource Assessment for the Gulf Stream System: The Florida Current

Authors : Kevin Haas, Xiufeng Yang, Vincent Neary, Budi Gunawan

Published in: Marine Renewable Energy

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ocean basin scale wind-driven currents provide a possible source of renewable energy using ocean turbine technology to convert kinetic energy of the flow to electricity. The Gulf Stream System in the North Atlantic Ocean is part of one of the largest subtropical gyres in the world. Within these gyres, the western intensification due to the Coriolis force produces some of the largest and most persistent ocean currents. This chapter discusses the potential for generating energy from the Gulf Stream System with a particular focus on the Florida Current portion. The overall characteristics related to the energy potential of the Gulf Stream are described based on 7 years of model simulations and 30 years of volume flux observations across the Florida Straits. Within the Florida Current portion of the Gulf Stream System, the mean kinetic power is found to be over 22 GW with a standard deviation near 6 GW. However, this variability was found to be contained within the top 100 m of the water column. Assessments based on the undisturbed flow indicate that deployment on the order of 5000 turbines could average over 5 GW of power. To quantify the effects of the energy extraction on the circulation to obtain a better estimate of the available power, idealized and realistic modeling of the ocean circulation are presented. The idealized model indicates that a mean of 5 GW of power could be dissipated within the Florida Straits, with much more power dissipated if broader regions are considered for energy extraction. However, the practical constraints on ocean current energy extraction, such as the acceptable range of impacts on the flow as seen in a realistic 3D ocean model simulation, lead to a reduction in the assessment of the power available.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Auer, S. (1987). Five-year climatological survey of the Gulf Stream System and its associated rings. Journal of Geophysical Research, 92, 11709–11726.CrossRef Auer, S. (1987). Five-year climatological survey of the Gulf Stream System and its associated rings. Journal of Geophysical Research, 92, 11709–11726.CrossRef
go back to reference Bane, J. M., He, R., Muglia, M., Lowcher, C. F., Gong, Y., & Haines, S. M. (2016). Marine hydrokinetic energy from western boundary currents. Annual Review of Marine Science, 9(1). Bane, J. M., He, R., Muglia, M., Lowcher, C. F., Gong, Y., & Haines, S. M. (2016). Marine hydrokinetic energy from western boundary currents. Annual Review of Marine Science, 9(1).
go back to reference Baringer, M. O., & Larsen, J. C. (2001). Sixteen years of Florida Current transport at 27N. Geophysical Research Letters, 28(16), 3179–3182.CrossRef Baringer, M. O., & Larsen, J. C. (2001). Sixteen years of Florida Current transport at 27N. Geophysical Research Letters, 28(16), 3179–3182.CrossRef
go back to reference Csanady, G. T. (1989). Energy-dissipation and upwelling in a western boundary current. Journal of Physical Oceanography, 19, 462–473.CrossRef Csanady, G. T. (1989). Energy-dissipation and upwelling in a western boundary current. Journal of Physical Oceanography, 19, 462–473.CrossRef
go back to reference Duerr, A. E. S., & Dhanak, M. R. (2012). An assessment of the hydrokinetic energy resource of the Florida Current. IEEE Journal of Oceanic Engineering, 37, 281–293.CrossRef Duerr, A. E. S., & Dhanak, M. R. (2012). An assessment of the hydrokinetic energy resource of the Florida Current. IEEE Journal of Oceanic Engineering, 37, 281–293.CrossRef
go back to reference Duing, W. (1975). Synoptic studies of transients in the Florida Current. Journal of Marine Research, 33, 53–73. Duing, W. (1975). Synoptic studies of transients in the Florida Current. Journal of Marine Research, 33, 53–73.
go back to reference Fratantoni, D. M. (2001). North Atlantic surface circulation during the 1990’s observed with satellite-tracked drifters. Journal of Geophysical Research Oceans, 106, 22067–22093.CrossRef Fratantoni, D. M. (2001). North Atlantic surface circulation during the 1990’s observed with satellite-tracked drifters. Journal of Geophysical Research Oceans, 106, 22067–22093.CrossRef
go back to reference Greatbatch, R., Lu, Y., DeYoung, B., & Larsen, J. (1995). The variation of transport through the straits of Florida: A barotropic model study. Journal of Physical Oceanography, 25(1), 2726–2740.CrossRef Greatbatch, R., Lu, Y., DeYoung, B., & Larsen, J. (1995). The variation of transport through the straits of Florida: A barotropic model study. Journal of Physical Oceanography, 25(1), 2726–2740.CrossRef
go back to reference Haas, K., Fritz, H., French, S., & Neary, V. (2013). Assessment of energy production potential from ocean currents along the United States coastline. doi:10.2172/1093367. Haas, K., Fritz, H., French, S., & Neary, V. (2013). Assessment of energy production potential from ocean currents along the United States coastline. doi:10.​2172/​1093367.
go back to reference Haas, K., Yang, X., & Fritz, H. (2014). Modeling impacts of energy extraction from the Gulf Stream System. Marine Energy Technology Symposium, April 2014, Seattle WA. Haas, K., Yang, X., & Fritz, H. (2014). Modeling impacts of energy extraction from the Gulf Stream System. Marine Energy Technology Symposium, April 2014, Seattle WA.
go back to reference Hall, M., & Fofonoff, N. (1993). Downstream development of the Gulf Stream from 68 to 55W. Journal of Physical Oceanography, 23(C1), 225–249.CrossRef Hall, M., & Fofonoff, N. (1993). Downstream development of the Gulf Stream from 68 to 55W. Journal of Physical Oceanography, 23(C1), 225–249.CrossRef
go back to reference Halkin, D., & Rossby, T. (1985). The structure and transport of the Gulf Stream at 73° W. Journal of Physical Oceanography, 15, 1439–1452.CrossRef Halkin, D., & Rossby, T. (1985). The structure and transport of the Gulf Stream at 73° W. Journal of Physical Oceanography, 15, 1439–1452.CrossRef
go back to reference Hanson, H. P. (2014). Gulf Stream energy resources: North Atlantic flow volume increases create more power. Ocean Engineering, 87, 78–83.CrossRef Hanson, H. P. (2014). Gulf Stream energy resources: North Atlantic flow volume increases create more power. Ocean Engineering, 87, 78–83.CrossRef
go back to reference Hanson, H. P., Skemp, S. H., Alsenas, G. M., & Coley, C. E. (2010). Power from the Florida Current: A new perspective on an old vision. Bulletin of the American Meteorological Society, 91(7), 861.CrossRef Hanson, H. P., Skemp, S. H., Alsenas, G. M., & Coley, C. E. (2010). Power from the Florida Current: A new perspective on an old vision. Bulletin of the American Meteorological Society, 91(7), 861.CrossRef
go back to reference Hanson, H. P., Bozek, A., & Duerr, A. E. (2011) The Florida Current: A clean but challenging energy resource. Eos Transactions AGU, 92(4). Hanson, H. P., Bozek, A., & Duerr, A. E. (2011) The Florida Current: A clean but challenging energy resource. Eos Transactions AGU, 92(4).
go back to reference Hogg, N. G., & Johns, W. E. (1995). Western Boundary Currents. Reviews of Geophysics, 33, 1311–1334.CrossRef Hogg, N. G., & Johns, W. E. (1995). Western Boundary Currents. Reviews of Geophysics, 33, 1311–1334.CrossRef
go back to reference IEC (2013). TS 62600-1:2013 Marine energy—Wave, tidal and other water current converters - Part 1: Terminology. IEC (2013). TS 62600-1:2013 Marine energy—Wave, tidal and other water current converters - Part 1: Terminology.
go back to reference Johns, W. E., Shay, T. J., Bane, J. M., & Watts, D. R. (1995). Gulf Stream structure, transport, and recirculation near 68w. Journal Geophysical Research, 100(C1), 817–838.CrossRef Johns, W. E., Shay, T. J., Bane, J. M., & Watts, D. R. (1995). Gulf Stream structure, transport, and recirculation near 68w. Journal Geophysical Research, 100(C1), 817–838.CrossRef
go back to reference Kelly, K. A., & Gille, S. T. (1990). Gulf-Stream surface transport and statistics at 69-Degrees-W from the geosat altimeter. Journal of Geophysical Research Oceans, 95, 3149.CrossRef Kelly, K. A., & Gille, S. T. (1990). Gulf-Stream surface transport and statistics at 69-Degrees-W from the geosat altimeter. Journal of Geophysical Research Oceans, 95, 3149.CrossRef
go back to reference Larsen, J. C., & Sanford, T. B. (1985). Florida Current volume transports from voltage measurements. Science, 227(4684), 302–304.CrossRef Larsen, J. C., & Sanford, T. B. (1985). Florida Current volume transports from voltage measurements. Science, 227(4684), 302–304.CrossRef
go back to reference Lee, T., & Williams, E. (1988). Wind-forced transport Fluctuations of the Florida Current. Journal of Physical Oceanography, 18, 937–946.CrossRef Lee, T., & Williams, E. (1988). Wind-forced transport Fluctuations of the Florida Current. Journal of Physical Oceanography, 18, 937–946.CrossRef
go back to reference Lissaman, P. B. S. (1979). Coriolis Program. Oceanus, 22, 23–28. Lissaman, P. B. S. (1979). Coriolis Program. Oceanus, 22, 23–28.
go back to reference Levitus, S., & Boyer, T. (1994). World ocean atlas 1994. Tech. rep., NOAA Atlas NESDIS, NOAA, Silver Spring, Md. Levitus, S., & Boyer, T. (1994). World ocean atlas 1994. Tech. rep., NOAA Atlas NESDIS, NOAA, Silver Spring, Md.
go back to reference Mooers, C. N., & Fiechter, J. (2005). Numerical simulations of mesoscale variability in the Straits of Florida. Ocean Dynamics, 55(3–4), 309–325.CrossRef Mooers, C. N., & Fiechter, J. (2005). Numerical simulations of mesoscale variability in the Straits of Florida. Ocean Dynamics, 55(3–4), 309–325.CrossRef
go back to reference National Research Council (NRC) (2013). An Evaluation of the U.S. Department of Energy’s Marine and Hydrokinetic Resource Assessments. The National Academies Press. National Research Council (NRC) (2013). An Evaluation of the U.S. Department of Energy’s Marine and Hydrokinetic Resource Assessments. The National Academies Press.
go back to reference Neary, V. S., Previsic, M., Jepsen, R. A., Lawson, M., Yu, Y., Copping, A. E. et al. (2014). Methodology for design and economic analysis of Marine Energy Conversion (MEC) technologies. SAND2014-9040, Sandia National Laboratories, March 2014. 261 pages. Neary, V. S., Previsic, M., Jepsen, R. A., Lawson, M., Yu, Y., Copping, A. E. et al. (2014). Methodology for design and economic analysis of Marine Energy Conversion (MEC) technologies. SAND2014-9040, Sandia National Laboratories, March 2014. 261 pages.
go back to reference Niiler, P., & Richardson, W. (1973). Seasonal variability of the Florida Current. Journal of Marine Research, 31, 144–167. Niiler, P., & Richardson, W. (1973). Seasonal variability of the Florida Current. Journal of Marine Research, 31, 144–167.
go back to reference Richardson, P. L. (1985). Average velocity and transport of the Gulf-Stream near 55w. Journal of Marine Research, 43, 83–111.CrossRef Richardson, P. L. (1985). Average velocity and transport of the Gulf-Stream near 55w. Journal of Marine Research, 43, 83–111.CrossRef
go back to reference Schott, F. A., Lee, T. N., & Zantopp, R. (1988). Variability of structure and transport of the Florida Current in the period range of days to seasonal. Journal of Physical Oceanography, 18(9), 1209–1230.CrossRef Schott, F. A., Lee, T. N., & Zantopp, R. (1988). Variability of structure and transport of the Florida Current in the period range of days to seasonal. Journal of Physical Oceanography, 18(9), 1209–1230.CrossRef
go back to reference Shirasawa, K., Tokunaga, K., Iwashita, H., & Shintake, T. (2016). Experimental verification of a floating ocean-current turbine with a single rotor for use in Kuroshio currents. Renewable Energy, 91, 189–195. Shirasawa, K., Tokunaga, K., Iwashita, H., & Shintake, T. (2016). Experimental verification of a floating ocean-current turbine with a single rotor for use in Kuroshio currents. Renewable Energy, 91, 189–195.
go back to reference Stommel, H. (1948). The westward intensification of wind-driven ocean currents. Transactions American Geophysical Union, 29, 202–206.CrossRef Stommel, H. (1948). The westward intensification of wind-driven ocean currents. Transactions American Geophysical Union, 29, 202–206.CrossRef
go back to reference Stommel, H. (1965). The Gulf Stream: A physical and dynamical description (2nd ed.). Berkeley, CA: University of California Press. Stommel, H. (1965). The Gulf Stream: A physical and dynamical description (2nd ed.). Berkeley, CA: University of California Press.
go back to reference Vallis, G. (2006). Atmospheric and oceanic fluid dynamics: fundamentals and large-scale circulation, Cambridge University Press. Vallis, G. (2006). Atmospheric and oceanic fluid dynamics: fundamentals and large-scale circulation, Cambridge University Press.
go back to reference Von Arx, W., Stewart, H., & Apel, J. (1974). The Florida Current as a potential source of usable energy. In Proceedings mac arthur workshop feasibility of extracting usable energy from the Florida Current (pp. 91–101). Von Arx, W., Stewart, H., & Apel, J. (1974). The Florida Current as a potential source of usable energy. In Proceedings mac arthur workshop feasibility of extracting usable energy from the Florida Current (pp. 91–101).
go back to reference Wunsch, C. (1998). The work done by the wind on the oceanic general circulation. Journal of Physical Oceanography, 28, 2332–2340.CrossRef Wunsch, C. (1998). The work done by the wind on the oceanic general circulation. Journal of Physical Oceanography, 28, 2332–2340.CrossRef
go back to reference Yang, X., Haas, K., & Fritz, H. (2013). Theoretical assessment of ocean current energy potential for the Gulf Stream System. Marine Technological Society Journal, 47(4). Yang, X., Haas, K., & Fritz, H. (2013). Theoretical assessment of ocean current energy potential for the Gulf Stream System. Marine Technological Society Journal, 47(4).
go back to reference Yang, X., Haas, K., & Fritz, H. (2014). Evaluating the potential for energy extraction from turbines in the Gulf Stream System. Renewable Energy, 72, 12–21.CrossRef Yang, X., Haas, K., & Fritz, H. (2014). Evaluating the potential for energy extraction from turbines in the Gulf Stream System. Renewable Energy, 72, 12–21.CrossRef
go back to reference Yang, X., Haas, K., Fritz, H., French, S., Shi, X., Smith, B., et al. (2015). National geodatabase of ocean current power resource in USA. Renewable and Sustainable Energy Reviews, 44, 496–507.CrossRef Yang, X., Haas, K., Fritz, H., French, S., Shi, X., Smith, B., et al. (2015). National geodatabase of ocean current power resource in USA. Renewable and Sustainable Energy Reviews, 44, 496–507.CrossRef
go back to reference Zlotnicki, V. (1991). Sea-level differences across the Gulf-Stream and Kuroshio Extension. Journal of Physical Oceanography, 21, 599–609.CrossRef Zlotnicki, V. (1991). Sea-level differences across the Gulf-Stream and Kuroshio Extension. Journal of Physical Oceanography, 21, 599–609.CrossRef
Metadata
Title
Ocean Current Energy Resource Assessment for the Gulf Stream System: The Florida Current
Authors
Kevin Haas
Xiufeng Yang
Vincent Neary
Budi Gunawan
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-53536-4_9