Skip to main content
Top
Published in: Metals and Materials International 1/2020

04-06-2019

Effects of Warm Rolling Deformation on the Microstructure and Ductility of Large 2219 Al–Cu Alloy Rings

Authors: Wanfu Guo, Youping Yi, Shiquan Huang, Hailin He, Jie Fang

Published in: Metals and Materials International | Issue 1/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Large 2219 Al–Cu alloy transition rings are extensively utilised in launch vehicles. However, coarse-grained structures and agglomerated Al2Cu second-phase particles considerably decrease the ductility of large 2219 Al–Cu alloy rings manufactured using the conventional hot rolling process. In this study, 10%–40% warm rolling deformation was applied to elucidate the evolution of grain structures, characteristics of the Al2Cu second-phase particles, and the influencing mechanisms of ductility. The results indicate that increased warm rolling deformation can facilitate dynamic recrystallisation and yield more sub-grains, which leads to the appearance of numerous finer and more equiaxed recrystallised grains after solution heat treatment; however, the homogeneity of the grain structure is decreased. With increased warm rolling deformation, Al2Cu second-phase particles are more dispersed and more completely fragmented; furthermore, the dispersed and fragmented Al2Cu particles are more thoroughly dissolved during solution heat treatment. By the combined action of grain structures and second-phase particles, the main fracture mode transitions from intergranular fracture into transcrystalline fracture. This results in elongation in the axial and circumferential directions increasing steadily with increased warm rolling deformation; elongation in the radial direction initially increases, and finally decreases due to the appearance of glide planes. Samples that experience a warm rolling deformation of 30% exhibit the best overall elongation.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference R. Kaibyshev, O. Sitdikova, I. Mazurina, D.R. Lesuer, Deformation behaviour of a 2219 Al alloy. Mater. Sci. Eng. A 334(1), 104–113 (2002)CrossRef R. Kaibyshev, O. Sitdikova, I. Mazurina, D.R. Lesuer, Deformation behaviour of a 2219 Al alloy. Mater. Sci. Eng. A 334(1), 104–113 (2002)CrossRef
2.
go back to reference H.L. He, Y.P. Yi, S.Q. Huang, Y.X. Zhang, An improved process for grain refinement of large 2219 Al alloy rings and its influence on mechanical properties. J. Mater. Sci. Technol. 35, 55–63 (2019)CrossRef H.L. He, Y.P. Yi, S.Q. Huang, Y.X. Zhang, An improved process for grain refinement of large 2219 Al alloy rings and its influence on mechanical properties. J. Mater. Sci. Technol. 35, 55–63 (2019)CrossRef
3.
go back to reference M. Meyers, K. Chawla, Mechanical Behaviour of Materials, 2nd edn. (Cambridge University Press, Cambridge, 2009), pp. 489–491 M. Meyers, K. Chawla, Mechanical Behaviour of Materials, 2nd edn. (Cambridge University Press, Cambridge, 2009), pp. 489–491
4.
go back to reference P.H. Ma, L.H. Qian, J.Y. Meng, S.L. Liu, F.C. Zhang, Fatigue crack growth behaviour of a coarse-and a fine-grained high manganese austenitic twin-induced plasticity steel. Mater. Sci. Eng. A 605(6), 160–166 (2014)CrossRef P.H. Ma, L.H. Qian, J.Y. Meng, S.L. Liu, F.C. Zhang, Fatigue crack growth behaviour of a coarse-and a fine-grained high manganese austenitic twin-induced plasticity steel. Mater. Sci. Eng. A 605(6), 160–166 (2014)CrossRef
5.
go back to reference G.H. Ma, R.X. Li, R.D. Li, Effects of stress concentration on low-temperature fracture behaviour of A356 alloy. Mater. Sci. Eng. A 667, 459–467 (2016)CrossRef G.H. Ma, R.X. Li, R.D. Li, Effects of stress concentration on low-temperature fracture behaviour of A356 alloy. Mater. Sci. Eng. A 667, 459–467 (2016)CrossRef
6.
go back to reference P.F. Thomason, A three-dimensional model for ductile fracture by the growth and coalescence of microvoids. Acta Metall. 33(6), 1087–1095 (1985)CrossRef P.F. Thomason, A three-dimensional model for ductile fracture by the growth and coalescence of microvoids. Acta Metall. 33(6), 1087–1095 (1985)CrossRef
7.
go back to reference R. Song, D. Ponge, D. Raabe, J.G. Speera, D.K. Matlock, Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Mater. Sci. Eng. A 44, 11–17 (2006) R. Song, D. Ponge, D. Raabe, J.G. Speera, D.K. Matlock, Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Mater. Sci. Eng. A 44, 11–17 (2006)
8.
go back to reference L. Liu, Y.X. Wu, H. Gong, S. Li, A.S. Ahmad, A physically based constitutive model and continuous dynamic recrystallization behaviour analysis of 2219 aluminum alloy during hot deformation process. Materials 11(8), 1443 (2018)CrossRef L. Liu, Y.X. Wu, H. Gong, S. Li, A.S. Ahmad, A physically based constitutive model and continuous dynamic recrystallization behaviour analysis of 2219 aluminum alloy during hot deformation process. Materials 11(8), 1443 (2018)CrossRef
9.
go back to reference L. Liu, Y.X. Wu, H. Gong, Effects of deformation parameters on microstructural evolution of 2219 aluminum alloy during intermediate thermo-mechanical treatment process. Materials 11(9), 1496 (2018)CrossRef L. Liu, Y.X. Wu, H. Gong, Effects of deformation parameters on microstructural evolution of 2219 aluminum alloy during intermediate thermo-mechanical treatment process. Materials 11(9), 1496 (2018)CrossRef
10.
go back to reference R. Kaibyshev, I. Kazakulov, D. Gromov, F. Musin, D.R. Lesuer, T.G. Nieh, Superplasticity in a 2219 aluminum alloy. Scripta Mater. 44(10), 2411–2417 (2001)CrossRef R. Kaibyshev, I. Kazakulov, D. Gromov, F. Musin, D.R. Lesuer, T.G. Nieh, Superplasticity in a 2219 aluminum alloy. Scripta Mater. 44(10), 2411–2417 (2001)CrossRef
11.
go back to reference H.L. He, Y.P. Yi, S.Q. Huang, Y.X. Zhang, Effects of deformation temperature on second-phase particles and mechanical properties of 2219 Al–Cu alloy. Mater. Sci. Eng. A 712, 414–423 (2018)CrossRef H.L. He, Y.P. Yi, S.Q. Huang, Y.X. Zhang, Effects of deformation temperature on second-phase particles and mechanical properties of 2219 Al–Cu alloy. Mater. Sci. Eng. A 712, 414–423 (2018)CrossRef
12.
go back to reference N. Haghdadi, A. Zarei-Hanzaki, A.A. Roostaei, A.R. Hemmati, Evaluating the mechanical properties of a thermomechanically processed unmodified A356 Al alloy employing shear punch testing method. Mater. Des. 43, 419–425 (2013)CrossRef N. Haghdadi, A. Zarei-Hanzaki, A.A. Roostaei, A.R. Hemmati, Evaluating the mechanical properties of a thermomechanically processed unmodified A356 Al alloy employing shear punch testing method. Mater. Des. 43, 419–425 (2013)CrossRef
13.
go back to reference B.S. Peng, A.L. Ning, Z.Y. Liu, X.C. Xu, S.S. Shou, Dissolution behavior of second phases in Al–Cu binary alloy during severe plastic deformation. Chin. J. Nonferrous. Met. 19(5), 874–880 (2009)CrossRef B.S. Peng, A.L. Ning, Z.Y. Liu, X.C. Xu, S.S. Shou, Dissolution behavior of second phases in Al–Cu binary alloy during severe plastic deformation. Chin. J. Nonferrous. Met. 19(5), 874–880 (2009)CrossRef
14.
go back to reference H.L. He, Y.P. Yi, S.Q. Huang, Y.X. Zhang, Effects of cold predeformation on dissolution of second-phase Al2Cu particles during solution treatment of 2219 Al–Cu alloy forgings. Mater. Charact. 135, 18–24 (2017)CrossRef H.L. He, Y.P. Yi, S.Q. Huang, Y.X. Zhang, Effects of cold predeformation on dissolution of second-phase Al2Cu particles during solution treatment of 2219 Al–Cu alloy forgings. Mater. Charact. 135, 18–24 (2017)CrossRef
15.
go back to reference R. Sandström, R. Lagneborg, A model for static recrystallization after hot deformation. Acta Metall. 23(4), 481–488 (1975)CrossRef R. Sandström, R. Lagneborg, A model for static recrystallization after hot deformation. Acta Metall. 23(4), 481–488 (1975)CrossRef
16.
go back to reference P.D. Ispánovity, I. Groma, W. Hoffelner, M. Samaras, Abnormal subgrain growth in a dislocation-based model of recovery. Modell. Simul. Mater. Sci. Eng. 19(4), 1243–1250 (2015) P.D. Ispánovity, I. Groma, W. Hoffelner, M. Samaras, Abnormal subgrain growth in a dislocation-based model of recovery. Modell. Simul. Mater. Sci. Eng. 19(4), 1243–1250 (2015)
17.
go back to reference X.Q. Yin, C.H. Park, Y.F. Li, W.J. Ye, Y.T. Zuo, Mechanism of continuous dynamic recrystallization in a 50Ti–47Ni–3Fe shape memory alloy during hot compressive deformation. J. Alloys Compd. 693, 426–431 (2017)CrossRef X.Q. Yin, C.H. Park, Y.F. Li, W.J. Ye, Y.T. Zuo, Mechanism of continuous dynamic recrystallization in a 50Ti–47Ni–3Fe shape memory alloy during hot compressive deformation. J. Alloys Compd. 693, 426–431 (2017)CrossRef
18.
go back to reference K. Huang, R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 111, 548–574 (2016)CrossRef K. Huang, R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 111, 548–574 (2016)CrossRef
19.
go back to reference H.L. He, Y.P. Yi, J.D. Cui, S.Q. Huang, Hot deformation characteristics and processing parameter optimization of 2219 Al alloy using constitutive equation and processing map. Vacuum 160, 293–302 (2019)CrossRef H.L. He, Y.P. Yi, J.D. Cui, S.Q. Huang, Hot deformation characteristics and processing parameter optimization of 2219 Al alloy using constitutive equation and processing map. Vacuum 160, 293–302 (2019)CrossRef
20.
go back to reference S. Wang, J.R. Luo, L.G. Hou, J.S. Zhang, L.Z. Zhuang, Physically based constitutive analysis and microstructural evolution of AA7050 aluminum alloy during hot compression. Mater. Des. 10, 7277–7289 (2016) S. Wang, J.R. Luo, L.G. Hou, J.S. Zhang, L.Z. Zhuang, Physically based constitutive analysis and microstructural evolution of AA7050 aluminum alloy during hot compression. Mater. Des. 10, 7277–7289 (2016)
21.
go back to reference G. Gottstein, Rekristallisation metallischer werkstoffe (DGM-Informations-gesellschaft, Oberursel, 1984), p. 60 G. Gottstein, Rekristallisation metallischer werkstoffe (DGM-Informations-gesellschaft, Oberursel, 1984), p. 60
22.
go back to reference J. Zhang, W.G. Li, Z.X. Guo, Static recrystallization and grain growth during annealing of an extruded Mg–Zn–Zr–Er magnesium alloy. J. Magn. Alloys 1, 31–38 (2013)CrossRef J. Zhang, W.G. Li, Z.X. Guo, Static recrystallization and grain growth during annealing of an extruded Mg–Zn–Zr–Er magnesium alloy. J. Magn. Alloys 1, 31–38 (2013)CrossRef
23.
go back to reference M.F. Vaz, A. Soares, M.A. Fortes, Computer simulation of grain growth in a non-equiaxed polycrystal. Scripta. Metal. Mater. 24(12), 2453–2458 (1990)CrossRef M.F. Vaz, A. Soares, M.A. Fortes, Computer simulation of grain growth in a non-equiaxed polycrystal. Scripta. Metal. Mater. 24(12), 2453–2458 (1990)CrossRef
24.
go back to reference F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Elsevier, Oxford, 2004), pp. 102–112 F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Elsevier, Oxford, 2004), pp. 102–112
25.
go back to reference D. Pal, B. Stucker, A study of subgrain formation in Al 3003 H-18 foils undergoing ultrasonic additive manufacturing using a dislocation density based crystal plasticity finite element framework. J. Appl. Phys. 113(20), 64 (2013)CrossRef D. Pal, B. Stucker, A study of subgrain formation in Al 3003 H-18 foils undergoing ultrasonic additive manufacturing using a dislocation density based crystal plasticity finite element framework. J. Appl. Phys. 113(20), 64 (2013)CrossRef
26.
go back to reference S.K. Chaudhury, D. Apelian, Effects of rapid heating on aging characteristics of T6 tempered Al–Si–Mg alloys using a fluidized bed. J. Mater. Sci. 41, 4684–4690 (2006)CrossRef S.K. Chaudhury, D. Apelian, Effects of rapid heating on aging characteristics of T6 tempered Al–Si–Mg alloys using a fluidized bed. J. Mater. Sci. 41, 4684–4690 (2006)CrossRef
27.
go back to reference D.A. Porter, K.E. Easterling, M.Y. Sherif, Phase Transformations in Metals and Alloys, 3rd edn. (Taylor & Francis Group, London, 2009), pp. 55–60 D.A. Porter, K.E. Easterling, M.Y. Sherif, Phase Transformations in Metals and Alloys, 3rd edn. (Taylor & Francis Group, London, 2009), pp. 55–60
28.
go back to reference G.S. Vinod Kumar, B.S. Murty, M. Chakraborty, Effect of TiAl3 particles size and distribution on their settling and dissolution behavior in aluminum. J. Mater. Sci. 45, 2921–2929 (2010)CrossRef G.S. Vinod Kumar, B.S. Murty, M. Chakraborty, Effect of TiAl3 particles size and distribution on their settling and dissolution behavior in aluminum. J. Mater. Sci. 45, 2921–2929 (2010)CrossRef
29.
go back to reference P.C. Liu, J.H. Hsieh, C. Li, Y.K. Chang, C.C. Yang, Dissolution of Cu nanoparticles and antibacterial behaviors of TaN–Cu nanocomposite thin films. Thin Solid Films 517, 4956–4960 (2009)CrossRef P.C. Liu, J.H. Hsieh, C. Li, Y.K. Chang, C.C. Yang, Dissolution of Cu nanoparticles and antibacterial behaviors of TaN–Cu nanocomposite thin films. Thin Solid Films 517, 4956–4960 (2009)CrossRef
30.
go back to reference J. Gubicza, I. Schiller, N.Q. Chinh, J. Illy, Z. Horit, T.G. Langdonc, The effect of severe plastic deformation on precipitation in supersaturated Al–Zn–Mg alloys. Mater. Sci. Eng. A 77, 460–461 (2007) J. Gubicza, I. Schiller, N.Q. Chinh, J. Illy, Z. Horit, T.G. Langdonc, The effect of severe plastic deformation on precipitation in supersaturated Al–Zn–Mg alloys. Mater. Sci. Eng. A 77, 460–461 (2007)
31.
go back to reference K. Horikawa, S. Kuramoto, M. Kanno, Intergranular fracture caused by trace impurities in an Al–5.5 mol% Mg alloy. Acta. Mater. 49, 3981–3989 (2001)CrossRef K. Horikawa, S. Kuramoto, M. Kanno, Intergranular fracture caused by trace impurities in an Al–5.5 mol% Mg alloy. Acta. Mater. 49, 3981–3989 (2001)CrossRef
32.
go back to reference S.H. Seyed Ebrahimi, M. Emamy, N. Pourkia, H.R. Lashgari, The microstructure, hardness and tensile properties of a new super high strength aluminum alloy with Zr addition. Mater. Des. 31(9), 4450–4456 (2010)CrossRef S.H. Seyed Ebrahimi, M. Emamy, N. Pourkia, H.R. Lashgari, The microstructure, hardness and tensile properties of a new super high strength aluminum alloy with Zr addition. Mater. Des. 31(9), 4450–4456 (2010)CrossRef
33.
go back to reference V.M.J. Sharma, K. Sree Kumar, B. Nageswara Rao, S.D. Pathak, Effect of microstructure and strength on the fracture behavior of AA2219 alloy. Mater. Sci. Eng. A 502, 45–53 (2009)CrossRef V.M.J. Sharma, K. Sree Kumar, B. Nageswara Rao, S.D. Pathak, Effect of microstructure and strength on the fracture behavior of AA2219 alloy. Mater. Sci. Eng. A 502, 45–53 (2009)CrossRef
34.
go back to reference C.W. Huang, Y.Q. Zhao, S.W. Xin, W. Zhou, Effect of microstructure on tensile properties of Ti–5Al–5Mo–5V–3Cr–1Zr alloy. J. Alloys. Compd. 693, 582–591 (2017)CrossRef C.W. Huang, Y.Q. Zhao, S.W. Xin, W. Zhou, Effect of microstructure on tensile properties of Ti–5Al–5Mo–5V–3Cr–1Zr alloy. J. Alloys. Compd. 693, 582–591 (2017)CrossRef
35.
go back to reference C.V.A. Narasayya, P. Rambabu, M.K. Mohan, R. Mitra, N.E. Prasad, Tensile deformation and fracture behaviour of an aerospace aluminium alloy AA2219 in different ageing conditions. Proc. Mater. Sci. 6, 322–330 (2014)CrossRef C.V.A. Narasayya, P. Rambabu, M.K. Mohan, R. Mitra, N.E. Prasad, Tensile deformation and fracture behaviour of an aerospace aluminium alloy AA2219 in different ageing conditions. Proc. Mater. Sci. 6, 322–330 (2014)CrossRef
36.
go back to reference N. Lu, K. Du, L. Lu, H.Q. Ye, Transition of dislocation nucleation induced by local stress concentration in nanotwin. Nat. Commun. 16(6), 7648 (2015)CrossRef N. Lu, K. Du, L. Lu, H.Q. Ye, Transition of dislocation nucleation induced by local stress concentration in nanotwin. Nat. Commun. 16(6), 7648 (2015)CrossRef
37.
go back to reference L.T. Berezhnyts’kyi, M.M. Senyuk, T.V. Prykhods’kyi, Influence of inhomogeneities of a material on the stress concentration near sharp defects. Mater. Sci. 34(2), 241–248 (1998)CrossRef L.T. Berezhnyts’kyi, M.M. Senyuk, T.V. Prykhods’kyi, Influence of inhomogeneities of a material on the stress concentration near sharp defects. Mater. Sci. 34(2), 241–248 (1998)CrossRef
38.
go back to reference S.G. Roberts, S.J. Noronha, A.J. Wilkinson, P.B. Hirsch, Modelling the initiation of cleavage fracture of ferritic steels. Acta Mater. 50(5), 1229–1244 (2002)CrossRef S.G. Roberts, S.J. Noronha, A.J. Wilkinson, P.B. Hirsch, Modelling the initiation of cleavage fracture of ferritic steels. Acta Mater. 50(5), 1229–1244 (2002)CrossRef
Metadata
Title
Effects of Warm Rolling Deformation on the Microstructure and Ductility of Large 2219 Al–Cu Alloy Rings
Authors
Wanfu Guo
Youping Yi
Shiquan Huang
Hailin He
Jie Fang
Publication date
04-06-2019
Publisher
The Korean Institute of Metals and Materials
Published in
Metals and Materials International / Issue 1/2020
Print ISSN: 1598-9623
Electronic ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-019-00303-5

Other articles of this Issue 1/2020

Metals and Materials International 1/2020 Go to the issue

Premium Partners