Skip to main content
Erschienen in: Metals and Materials International 1/2020

04.06.2019

Effects of Warm Rolling Deformation on the Microstructure and Ductility of Large 2219 Al–Cu Alloy Rings

verfasst von: Wanfu Guo, Youping Yi, Shiquan Huang, Hailin He, Jie Fang

Erschienen in: Metals and Materials International | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Large 2219 Al–Cu alloy transition rings are extensively utilised in launch vehicles. However, coarse-grained structures and agglomerated Al2Cu second-phase particles considerably decrease the ductility of large 2219 Al–Cu alloy rings manufactured using the conventional hot rolling process. In this study, 10%–40% warm rolling deformation was applied to elucidate the evolution of grain structures, characteristics of the Al2Cu second-phase particles, and the influencing mechanisms of ductility. The results indicate that increased warm rolling deformation can facilitate dynamic recrystallisation and yield more sub-grains, which leads to the appearance of numerous finer and more equiaxed recrystallised grains after solution heat treatment; however, the homogeneity of the grain structure is decreased. With increased warm rolling deformation, Al2Cu second-phase particles are more dispersed and more completely fragmented; furthermore, the dispersed and fragmented Al2Cu particles are more thoroughly dissolved during solution heat treatment. By the combined action of grain structures and second-phase particles, the main fracture mode transitions from intergranular fracture into transcrystalline fracture. This results in elongation in the axial and circumferential directions increasing steadily with increased warm rolling deformation; elongation in the radial direction initially increases, and finally decreases due to the appearance of glide planes. Samples that experience a warm rolling deformation of 30% exhibit the best overall elongation.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Kaibyshev, O. Sitdikova, I. Mazurina, D.R. Lesuer, Deformation behaviour of a 2219 Al alloy. Mater. Sci. Eng. A 334(1), 104–113 (2002)CrossRef R. Kaibyshev, O. Sitdikova, I. Mazurina, D.R. Lesuer, Deformation behaviour of a 2219 Al alloy. Mater. Sci. Eng. A 334(1), 104–113 (2002)CrossRef
2.
Zurück zum Zitat H.L. He, Y.P. Yi, S.Q. Huang, Y.X. Zhang, An improved process for grain refinement of large 2219 Al alloy rings and its influence on mechanical properties. J. Mater. Sci. Technol. 35, 55–63 (2019)CrossRef H.L. He, Y.P. Yi, S.Q. Huang, Y.X. Zhang, An improved process for grain refinement of large 2219 Al alloy rings and its influence on mechanical properties. J. Mater. Sci. Technol. 35, 55–63 (2019)CrossRef
3.
Zurück zum Zitat M. Meyers, K. Chawla, Mechanical Behaviour of Materials, 2nd edn. (Cambridge University Press, Cambridge, 2009), pp. 489–491 M. Meyers, K. Chawla, Mechanical Behaviour of Materials, 2nd edn. (Cambridge University Press, Cambridge, 2009), pp. 489–491
4.
Zurück zum Zitat P.H. Ma, L.H. Qian, J.Y. Meng, S.L. Liu, F.C. Zhang, Fatigue crack growth behaviour of a coarse-and a fine-grained high manganese austenitic twin-induced plasticity steel. Mater. Sci. Eng. A 605(6), 160–166 (2014)CrossRef P.H. Ma, L.H. Qian, J.Y. Meng, S.L. Liu, F.C. Zhang, Fatigue crack growth behaviour of a coarse-and a fine-grained high manganese austenitic twin-induced plasticity steel. Mater. Sci. Eng. A 605(6), 160–166 (2014)CrossRef
5.
Zurück zum Zitat G.H. Ma, R.X. Li, R.D. Li, Effects of stress concentration on low-temperature fracture behaviour of A356 alloy. Mater. Sci. Eng. A 667, 459–467 (2016)CrossRef G.H. Ma, R.X. Li, R.D. Li, Effects of stress concentration on low-temperature fracture behaviour of A356 alloy. Mater. Sci. Eng. A 667, 459–467 (2016)CrossRef
6.
Zurück zum Zitat P.F. Thomason, A three-dimensional model for ductile fracture by the growth and coalescence of microvoids. Acta Metall. 33(6), 1087–1095 (1985)CrossRef P.F. Thomason, A three-dimensional model for ductile fracture by the growth and coalescence of microvoids. Acta Metall. 33(6), 1087–1095 (1985)CrossRef
7.
Zurück zum Zitat R. Song, D. Ponge, D. Raabe, J.G. Speera, D.K. Matlock, Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Mater. Sci. Eng. A 44, 11–17 (2006) R. Song, D. Ponge, D. Raabe, J.G. Speera, D.K. Matlock, Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Mater. Sci. Eng. A 44, 11–17 (2006)
8.
Zurück zum Zitat L. Liu, Y.X. Wu, H. Gong, S. Li, A.S. Ahmad, A physically based constitutive model and continuous dynamic recrystallization behaviour analysis of 2219 aluminum alloy during hot deformation process. Materials 11(8), 1443 (2018)CrossRef L. Liu, Y.X. Wu, H. Gong, S. Li, A.S. Ahmad, A physically based constitutive model and continuous dynamic recrystallization behaviour analysis of 2219 aluminum alloy during hot deformation process. Materials 11(8), 1443 (2018)CrossRef
9.
Zurück zum Zitat L. Liu, Y.X. Wu, H. Gong, Effects of deformation parameters on microstructural evolution of 2219 aluminum alloy during intermediate thermo-mechanical treatment process. Materials 11(9), 1496 (2018)CrossRef L. Liu, Y.X. Wu, H. Gong, Effects of deformation parameters on microstructural evolution of 2219 aluminum alloy during intermediate thermo-mechanical treatment process. Materials 11(9), 1496 (2018)CrossRef
10.
Zurück zum Zitat R. Kaibyshev, I. Kazakulov, D. Gromov, F. Musin, D.R. Lesuer, T.G. Nieh, Superplasticity in a 2219 aluminum alloy. Scripta Mater. 44(10), 2411–2417 (2001)CrossRef R. Kaibyshev, I. Kazakulov, D. Gromov, F. Musin, D.R. Lesuer, T.G. Nieh, Superplasticity in a 2219 aluminum alloy. Scripta Mater. 44(10), 2411–2417 (2001)CrossRef
11.
Zurück zum Zitat H.L. He, Y.P. Yi, S.Q. Huang, Y.X. Zhang, Effects of deformation temperature on second-phase particles and mechanical properties of 2219 Al–Cu alloy. Mater. Sci. Eng. A 712, 414–423 (2018)CrossRef H.L. He, Y.P. Yi, S.Q. Huang, Y.X. Zhang, Effects of deformation temperature on second-phase particles and mechanical properties of 2219 Al–Cu alloy. Mater. Sci. Eng. A 712, 414–423 (2018)CrossRef
12.
Zurück zum Zitat N. Haghdadi, A. Zarei-Hanzaki, A.A. Roostaei, A.R. Hemmati, Evaluating the mechanical properties of a thermomechanically processed unmodified A356 Al alloy employing shear punch testing method. Mater. Des. 43, 419–425 (2013)CrossRef N. Haghdadi, A. Zarei-Hanzaki, A.A. Roostaei, A.R. Hemmati, Evaluating the mechanical properties of a thermomechanically processed unmodified A356 Al alloy employing shear punch testing method. Mater. Des. 43, 419–425 (2013)CrossRef
13.
Zurück zum Zitat B.S. Peng, A.L. Ning, Z.Y. Liu, X.C. Xu, S.S. Shou, Dissolution behavior of second phases in Al–Cu binary alloy during severe plastic deformation. Chin. J. Nonferrous. Met. 19(5), 874–880 (2009)CrossRef B.S. Peng, A.L. Ning, Z.Y. Liu, X.C. Xu, S.S. Shou, Dissolution behavior of second phases in Al–Cu binary alloy during severe plastic deformation. Chin. J. Nonferrous. Met. 19(5), 874–880 (2009)CrossRef
14.
Zurück zum Zitat H.L. He, Y.P. Yi, S.Q. Huang, Y.X. Zhang, Effects of cold predeformation on dissolution of second-phase Al2Cu particles during solution treatment of 2219 Al–Cu alloy forgings. Mater. Charact. 135, 18–24 (2017)CrossRef H.L. He, Y.P. Yi, S.Q. Huang, Y.X. Zhang, Effects of cold predeformation on dissolution of second-phase Al2Cu particles during solution treatment of 2219 Al–Cu alloy forgings. Mater. Charact. 135, 18–24 (2017)CrossRef
15.
Zurück zum Zitat R. Sandström, R. Lagneborg, A model for static recrystallization after hot deformation. Acta Metall. 23(4), 481–488 (1975)CrossRef R. Sandström, R. Lagneborg, A model for static recrystallization after hot deformation. Acta Metall. 23(4), 481–488 (1975)CrossRef
16.
Zurück zum Zitat P.D. Ispánovity, I. Groma, W. Hoffelner, M. Samaras, Abnormal subgrain growth in a dislocation-based model of recovery. Modell. Simul. Mater. Sci. Eng. 19(4), 1243–1250 (2015) P.D. Ispánovity, I. Groma, W. Hoffelner, M. Samaras, Abnormal subgrain growth in a dislocation-based model of recovery. Modell. Simul. Mater. Sci. Eng. 19(4), 1243–1250 (2015)
17.
Zurück zum Zitat X.Q. Yin, C.H. Park, Y.F. Li, W.J. Ye, Y.T. Zuo, Mechanism of continuous dynamic recrystallization in a 50Ti–47Ni–3Fe shape memory alloy during hot compressive deformation. J. Alloys Compd. 693, 426–431 (2017)CrossRef X.Q. Yin, C.H. Park, Y.F. Li, W.J. Ye, Y.T. Zuo, Mechanism of continuous dynamic recrystallization in a 50Ti–47Ni–3Fe shape memory alloy during hot compressive deformation. J. Alloys Compd. 693, 426–431 (2017)CrossRef
18.
Zurück zum Zitat K. Huang, R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 111, 548–574 (2016)CrossRef K. Huang, R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 111, 548–574 (2016)CrossRef
19.
Zurück zum Zitat H.L. He, Y.P. Yi, J.D. Cui, S.Q. Huang, Hot deformation characteristics and processing parameter optimization of 2219 Al alloy using constitutive equation and processing map. Vacuum 160, 293–302 (2019)CrossRef H.L. He, Y.P. Yi, J.D. Cui, S.Q. Huang, Hot deformation characteristics and processing parameter optimization of 2219 Al alloy using constitutive equation and processing map. Vacuum 160, 293–302 (2019)CrossRef
20.
Zurück zum Zitat S. Wang, J.R. Luo, L.G. Hou, J.S. Zhang, L.Z. Zhuang, Physically based constitutive analysis and microstructural evolution of AA7050 aluminum alloy during hot compression. Mater. Des. 10, 7277–7289 (2016) S. Wang, J.R. Luo, L.G. Hou, J.S. Zhang, L.Z. Zhuang, Physically based constitutive analysis and microstructural evolution of AA7050 aluminum alloy during hot compression. Mater. Des. 10, 7277–7289 (2016)
21.
Zurück zum Zitat G. Gottstein, Rekristallisation metallischer werkstoffe (DGM-Informations-gesellschaft, Oberursel, 1984), p. 60 G. Gottstein, Rekristallisation metallischer werkstoffe (DGM-Informations-gesellschaft, Oberursel, 1984), p. 60
22.
Zurück zum Zitat J. Zhang, W.G. Li, Z.X. Guo, Static recrystallization and grain growth during annealing of an extruded Mg–Zn–Zr–Er magnesium alloy. J. Magn. Alloys 1, 31–38 (2013)CrossRef J. Zhang, W.G. Li, Z.X. Guo, Static recrystallization and grain growth during annealing of an extruded Mg–Zn–Zr–Er magnesium alloy. J. Magn. Alloys 1, 31–38 (2013)CrossRef
23.
Zurück zum Zitat M.F. Vaz, A. Soares, M.A. Fortes, Computer simulation of grain growth in a non-equiaxed polycrystal. Scripta. Metal. Mater. 24(12), 2453–2458 (1990)CrossRef M.F. Vaz, A. Soares, M.A. Fortes, Computer simulation of grain growth in a non-equiaxed polycrystal. Scripta. Metal. Mater. 24(12), 2453–2458 (1990)CrossRef
24.
Zurück zum Zitat F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Elsevier, Oxford, 2004), pp. 102–112 F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Elsevier, Oxford, 2004), pp. 102–112
25.
Zurück zum Zitat D. Pal, B. Stucker, A study of subgrain formation in Al 3003 H-18 foils undergoing ultrasonic additive manufacturing using a dislocation density based crystal plasticity finite element framework. J. Appl. Phys. 113(20), 64 (2013)CrossRef D. Pal, B. Stucker, A study of subgrain formation in Al 3003 H-18 foils undergoing ultrasonic additive manufacturing using a dislocation density based crystal plasticity finite element framework. J. Appl. Phys. 113(20), 64 (2013)CrossRef
26.
Zurück zum Zitat S.K. Chaudhury, D. Apelian, Effects of rapid heating on aging characteristics of T6 tempered Al–Si–Mg alloys using a fluidized bed. J. Mater. Sci. 41, 4684–4690 (2006)CrossRef S.K. Chaudhury, D. Apelian, Effects of rapid heating on aging characteristics of T6 tempered Al–Si–Mg alloys using a fluidized bed. J. Mater. Sci. 41, 4684–4690 (2006)CrossRef
27.
Zurück zum Zitat D.A. Porter, K.E. Easterling, M.Y. Sherif, Phase Transformations in Metals and Alloys, 3rd edn. (Taylor & Francis Group, London, 2009), pp. 55–60 D.A. Porter, K.E. Easterling, M.Y. Sherif, Phase Transformations in Metals and Alloys, 3rd edn. (Taylor & Francis Group, London, 2009), pp. 55–60
28.
Zurück zum Zitat G.S. Vinod Kumar, B.S. Murty, M. Chakraborty, Effect of TiAl3 particles size and distribution on their settling and dissolution behavior in aluminum. J. Mater. Sci. 45, 2921–2929 (2010)CrossRef G.S. Vinod Kumar, B.S. Murty, M. Chakraborty, Effect of TiAl3 particles size and distribution on their settling and dissolution behavior in aluminum. J. Mater. Sci. 45, 2921–2929 (2010)CrossRef
29.
Zurück zum Zitat P.C. Liu, J.H. Hsieh, C. Li, Y.K. Chang, C.C. Yang, Dissolution of Cu nanoparticles and antibacterial behaviors of TaN–Cu nanocomposite thin films. Thin Solid Films 517, 4956–4960 (2009)CrossRef P.C. Liu, J.H. Hsieh, C. Li, Y.K. Chang, C.C. Yang, Dissolution of Cu nanoparticles and antibacterial behaviors of TaN–Cu nanocomposite thin films. Thin Solid Films 517, 4956–4960 (2009)CrossRef
30.
Zurück zum Zitat J. Gubicza, I. Schiller, N.Q. Chinh, J. Illy, Z. Horit, T.G. Langdonc, The effect of severe plastic deformation on precipitation in supersaturated Al–Zn–Mg alloys. Mater. Sci. Eng. A 77, 460–461 (2007) J. Gubicza, I. Schiller, N.Q. Chinh, J. Illy, Z. Horit, T.G. Langdonc, The effect of severe plastic deformation on precipitation in supersaturated Al–Zn–Mg alloys. Mater. Sci. Eng. A 77, 460–461 (2007)
31.
Zurück zum Zitat K. Horikawa, S. Kuramoto, M. Kanno, Intergranular fracture caused by trace impurities in an Al–5.5 mol% Mg alloy. Acta. Mater. 49, 3981–3989 (2001)CrossRef K. Horikawa, S. Kuramoto, M. Kanno, Intergranular fracture caused by trace impurities in an Al–5.5 mol% Mg alloy. Acta. Mater. 49, 3981–3989 (2001)CrossRef
32.
Zurück zum Zitat S.H. Seyed Ebrahimi, M. Emamy, N. Pourkia, H.R. Lashgari, The microstructure, hardness and tensile properties of a new super high strength aluminum alloy with Zr addition. Mater. Des. 31(9), 4450–4456 (2010)CrossRef S.H. Seyed Ebrahimi, M. Emamy, N. Pourkia, H.R. Lashgari, The microstructure, hardness and tensile properties of a new super high strength aluminum alloy with Zr addition. Mater. Des. 31(9), 4450–4456 (2010)CrossRef
33.
Zurück zum Zitat V.M.J. Sharma, K. Sree Kumar, B. Nageswara Rao, S.D. Pathak, Effect of microstructure and strength on the fracture behavior of AA2219 alloy. Mater. Sci. Eng. A 502, 45–53 (2009)CrossRef V.M.J. Sharma, K. Sree Kumar, B. Nageswara Rao, S.D. Pathak, Effect of microstructure and strength on the fracture behavior of AA2219 alloy. Mater. Sci. Eng. A 502, 45–53 (2009)CrossRef
34.
Zurück zum Zitat C.W. Huang, Y.Q. Zhao, S.W. Xin, W. Zhou, Effect of microstructure on tensile properties of Ti–5Al–5Mo–5V–3Cr–1Zr alloy. J. Alloys. Compd. 693, 582–591 (2017)CrossRef C.W. Huang, Y.Q. Zhao, S.W. Xin, W. Zhou, Effect of microstructure on tensile properties of Ti–5Al–5Mo–5V–3Cr–1Zr alloy. J. Alloys. Compd. 693, 582–591 (2017)CrossRef
35.
Zurück zum Zitat C.V.A. Narasayya, P. Rambabu, M.K. Mohan, R. Mitra, N.E. Prasad, Tensile deformation and fracture behaviour of an aerospace aluminium alloy AA2219 in different ageing conditions. Proc. Mater. Sci. 6, 322–330 (2014)CrossRef C.V.A. Narasayya, P. Rambabu, M.K. Mohan, R. Mitra, N.E. Prasad, Tensile deformation and fracture behaviour of an aerospace aluminium alloy AA2219 in different ageing conditions. Proc. Mater. Sci. 6, 322–330 (2014)CrossRef
36.
Zurück zum Zitat N. Lu, K. Du, L. Lu, H.Q. Ye, Transition of dislocation nucleation induced by local stress concentration in nanotwin. Nat. Commun. 16(6), 7648 (2015)CrossRef N. Lu, K. Du, L. Lu, H.Q. Ye, Transition of dislocation nucleation induced by local stress concentration in nanotwin. Nat. Commun. 16(6), 7648 (2015)CrossRef
37.
Zurück zum Zitat L.T. Berezhnyts’kyi, M.M. Senyuk, T.V. Prykhods’kyi, Influence of inhomogeneities of a material on the stress concentration near sharp defects. Mater. Sci. 34(2), 241–248 (1998)CrossRef L.T. Berezhnyts’kyi, M.M. Senyuk, T.V. Prykhods’kyi, Influence of inhomogeneities of a material on the stress concentration near sharp defects. Mater. Sci. 34(2), 241–248 (1998)CrossRef
38.
Zurück zum Zitat S.G. Roberts, S.J. Noronha, A.J. Wilkinson, P.B. Hirsch, Modelling the initiation of cleavage fracture of ferritic steels. Acta Mater. 50(5), 1229–1244 (2002)CrossRef S.G. Roberts, S.J. Noronha, A.J. Wilkinson, P.B. Hirsch, Modelling the initiation of cleavage fracture of ferritic steels. Acta Mater. 50(5), 1229–1244 (2002)CrossRef
Metadaten
Titel
Effects of Warm Rolling Deformation on the Microstructure and Ductility of Large 2219 Al–Cu Alloy Rings
verfasst von
Wanfu Guo
Youping Yi
Shiquan Huang
Hailin He
Jie Fang
Publikationsdatum
04.06.2019
Verlag
The Korean Institute of Metals and Materials
Erschienen in
Metals and Materials International / Ausgabe 1/2020
Print ISSN: 1598-9623
Elektronische ISSN: 2005-4149
DOI
https://doi.org/10.1007/s12540-019-00303-5

Weitere Artikel der Ausgabe 1/2020

Metals and Materials International 1/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.