Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 12/2017

02-03-2017

Electric-current-assisted sintering of nanosilver paste for copper bonding

Authors: Yunhui Mei, Lin Li, Xin Li, Wanli Li, Haidong Yan, Yijing Xie

Published in: Journal of Materials Science: Materials in Electronics | Issue 12/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Nanosilver paste is a promising lead-free die-attach material suitable for power electronic packaging, especially for high-temperature applications. Compared with conventional hot-pressing method, electric-current-assisted sintering (ECAS) can greatly improve the efficiency and properties of sintered nanosilver joint. In this paper, the rapid sintering behaviors and mechanical properties, including temperature profile, removal of organics, shrinkage, pore size, particle size, and shear strength, of nanosilver joint at different stages of ECAS were studied to help understand the fundamental mechanism. Based on the results, rapid sintering by high direct current, e.g., 6 kA, can sinter nanosilver for copper bonding at low temperature within 1200 ms under uniaxial load, e.g., 10 MPa. And the ECAS process can be divided into three stages. At the initial stage, the removal of most organics and the rearrangement of nanosilver particles cause rapid shrinkage of the joint. After initial stage the nanosilver particles come into direct contact with each other, and the shear strength of the joint increases quickly due to the diffusion of atoms through the melted region between the particles. At the final stage, further shrinkage of the joint proceeds by plastic deformation under loading and high temperature (above 400 °C). The elimination of crystal defects also contributes to the shrinkage at the final stage. The sintering of nanosilver finally increases the shear strength of the joint to about 50 MPa.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference X. Li, G. Chen, L. Wang, Y.H. Mei, X. Chen, G.Q. Lu, Mechanical property evaluation of nano-silver paste sintered joint using lap-shear test. Mater. Sci. Eng. A 579, 108–113 (2013)CrossRef X. Li, G. Chen, L. Wang, Y.H. Mei, X. Chen, G.Q. Lu, Mechanical property evaluation of nano-silver paste sintered joint using lap-shear test. Mater. Sci. Eng. A 579, 108–113 (2013)CrossRef
2.
go back to reference R.W. Johnson, J.L. Evans, P. Jacobsen, J.R. Thompson, M. Christopher. The changing automotive environment: high-temperature electronics. IEEE Trans. Electron. Packag.Manuf 27 164–176 (2004)CrossRef R.W. Johnson, J.L. Evans, P. Jacobsen, J.R. Thompson, M. Christopher. The changing automotive environment: high-temperature electronics. IEEE Trans. Electron. Packag.Manuf 27 164–176 (2004)CrossRef
3.
go back to reference D.J. Yu, X. Chen, G. Chen, G.Q. Lu, Z.Q. Wang, Applying Anand model to low-temperature sintered nanoscale silver paste chip attachment. Mater. Des. 30, 4574–4579 (2009)CrossRef D.J. Yu, X. Chen, G. Chen, G.Q. Lu, Z.Q. Wang, Applying Anand model to low-temperature sintered nanoscale silver paste chip attachment. Mater. Des. 30, 4574–4579 (2009)CrossRef
4.
go back to reference G. Chen, L. Yu, Y.H. Mei, X. Li, X. Chen, G.Q. Lu, Uniaxial ratcheting behavior of sintered nanosilver joint for electronic packaging. Mater. Sci. Eng. A 591, 121–129 (2014)CrossRef G. Chen, L. Yu, Y.H. Mei, X. Li, X. Chen, G.Q. Lu, Uniaxial ratcheting behavior of sintered nanosilver joint for electronic packaging. Mater. Sci. Eng. A 591, 121–129 (2014)CrossRef
5.
go back to reference Y.H. Mei, G. Chen, X. Li, G.Q. Lu, X. Chen. Evolution of curvature under thermal cycling in sandwich assembly bonded by sintered nanosilver paste. Solder. Surf. Mt. Technol 25, (2013) 107–116CrossRef Y.H. Mei, G. Chen, X. Li, G.Q. Lu, X. Chen. Evolution of curvature under thermal cycling in sandwich assembly bonded by sintered nanosilver paste. Solder. Surf. Mt. Technol 25, (2013) 107–116CrossRef
6.
go back to reference Y. H Mei, G. Chen, G.Q. Lu, X. Chen. Effect of joint sizes of low-temperature sintered nano-silver on thermal residual curvature of sandwiched assembly. Int. J. Adhes. Adhes. 35, 88–93 (2013)CrossRef Y. H Mei, G. Chen, G.Q. Lu, X. Chen. Effect of joint sizes of low-temperature sintered nano-silver on thermal residual curvature of sandwiched assembly. Int. J. Adhes. Adhes. 35, 88–93 (2013)CrossRef
7.
go back to reference J.G. Bai, Z.Z. Zhang, J.N. Calata, G.Q. Lu. Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material. IEEE Trans. Compon. Packag.Technol. 29, 589–593 (2006)CrossRef J.G. Bai, Z.Z. Zhang, J.N. Calata, G.Q. Lu. Low-temperature sintered nanoscale silver as a novel semiconductor device-metallized substrate interconnect material. IEEE Trans. Compon. Packag.Technol. 29, 589–593 (2006)CrossRef
8.
go back to reference Y.H. Mei, T. Wang, X. Cao, G. Chen, G.Q. Lu, X. Chen. Transient thermal impedance measurements on low-temperature-sintered nanoscale silver joints. J. Electron. Mater. 41, 3152–3160 (2012)CrossRef Y.H. Mei, T. Wang, X. Cao, G. Chen, G.Q. Lu, X. Chen. Transient thermal impedance measurements on low-temperature-sintered nanoscale silver joints. J. Electron. Mater. 41, 3152–3160 (2012)CrossRef
9.
go back to reference L. Coppola, D. Huff, F. Wang, R. Burgos, D. Boroyevich, Survey on high-temperature packaging materials for SiC-based power electronics modules. In: Power Electronics Specialists Conference, Orlando (2007), pp. 2234–2240 L. Coppola, D. Huff, F. Wang, R. Burgos, D. Boroyevich, Survey on high-temperature packaging materials for SiC-based power electronics modules. In: Power Electronics Specialists Conference, Orlando (2007), pp. 2234–2240
10.
go back to reference E. Ide, S. Angata, A. Hirose, K. Kobayashi. Metal-metal bonding process using Ag metallo-organic nanoparticles. Acta Mater. 53, 2385–2393 (2005)CrossRef E. Ide, S. Angata, A. Hirose, K. Kobayashi. Metal-metal bonding process using Ag metallo-organic nanoparticles. Acta Mater. 53, 2385–2393 (2005)CrossRef
11.
go back to reference H. Alarifi, A. Hu, M. Yavuz, Y.N. Zhou. Silver nanoparticle paste for low-temperature bonding of copper. J. Electron. Mater. 40, 1394–1402 (2011)CrossRef H. Alarifi, A. Hu, M. Yavuz, Y.N. Zhou. Silver nanoparticle paste for low-temperature bonding of copper. J. Electron. Mater. 40, 1394–1402 (2011)CrossRef
12.
go back to reference Y.H. Mei, G.Q. Lu, X. Chen, S.F. Luo, D. Ibitayo. Migration of sintered nanosilver die-attach material on alumina substrate between 250℃and 400℃in dry air. IEEE. Trans. Device Mater. Reliab. 11, 316–322 (2011)CrossRef Y.H. Mei, G.Q. Lu, X. Chen, S.F. Luo, D. Ibitayo. Migration of sintered nanosilver die-attach material on alumina substrate between 250℃and 400℃in dry air. IEEE. Trans. Device Mater. Reliab. 11, 316–322 (2011)CrossRef
13.
go back to reference K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, M. Nogi, Low-temperature low-pressure die attach with hybrid silver particle paste. Microelectron. Reliab. 52, 375–380 (2012)CrossRef K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.S. Kim, M. Nogi, Low-temperature low-pressure die attach with hybrid silver particle paste. Microelectron. Reliab. 52, 375–380 (2012)CrossRef
14.
go back to reference J. Yan, G. Zou, A.P. Wu, J. Ren, J. Yan, A. Hu, Y. Zhou, Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging. Scr. Mater. 66, 582–585 (2012)CrossRef J. Yan, G. Zou, A.P. Wu, J. Ren, J. Yan, A. Hu, Y. Zhou, Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging. Scr. Mater. 66, 582–585 (2012)CrossRef
15.
go back to reference X. Li, G. Chen, X. Chen, G.Q. Lu, L. Wang, Y.H. Mei. Mechanical property evaluation of nano-silver paste sintered joint using lap-shear test. Solder. Surf. Mt. Technol. 24, 120–126 (2012)CrossRef X. Li, G. Chen, X. Chen, G.Q. Lu, L. Wang, Y.H. Mei. Mechanical property evaluation of nano-silver paste sintered joint using lap-shear test. Solder. Surf. Mt. Technol. 24, 120–126 (2012)CrossRef
16.
go back to reference J.G. Bai, T.G. Lei, J.N. Calata, G.Q. Lu, Control of nanosilver sintering attained through organic binder burnout. J. Mater. Res. 22, 3494 (2007)CrossRef J.G. Bai, T.G. Lei, J.N. Calata, G.Q. Lu, Control of nanosilver sintering attained through organic binder burnout. J. Mater. Res. 22, 3494 (2007)CrossRef
17.
go back to reference R. Roy, D. Agrawal, J. Cheng, S. Gedevanishvili, Full sintering of powdered-metal bodies in a microwave field. Nature 399, 668–670 (1999)CrossRef R. Roy, D. Agrawal, J. Cheng, S. Gedevanishvili, Full sintering of powdered-metal bodies in a microwave field. Nature 399, 668–670 (1999)CrossRef
18.
go back to reference M. Agarwala, D. Bourell, J. Beaman, H. Marcus, J. Barlow, Direct selective laser sintering of metals. Rapid Prototyping J 1, 26–36 (1995)CrossRef M. Agarwala, D. Bourell, J. Beaman, H. Marcus, J. Barlow, Direct selective laser sintering of metals. Rapid Prototyping J 1, 26–36 (1995)CrossRef
19.
go back to reference R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, G. Cao. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng. R 63, 127–287 (2009)CrossRef R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, G. Cao. Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater. Sci. Eng. R 63, 127–287 (2009)CrossRef
20.
go back to reference M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J. Alloys Compd. 494, 175–189 (2010)CrossRef M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J. Alloys Compd. 494, 175–189 (2010)CrossRef
21.
go back to reference D. He, Z. Fu, W. Wang, J. Zhang, Z.A. Munir, P. Liu, Temperature-gradient joining of Ti–6Al–4 V alloys by pulsed electric current sintering. Mater. Sci. Eng. A 535, 182–188 (2012)CrossRef D. He, Z. Fu, W. Wang, J. Zhang, Z.A. Munir, P. Liu, Temperature-gradient joining of Ti–6Al–4 V alloys by pulsed electric current sintering. Mater. Sci. Eng. A 535, 182–188 (2012)CrossRef
22.
go back to reference Z. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763–777 (2006)CrossRef Z. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763–777 (2006)CrossRef
23.
go back to reference Y. Fu, C. Shearwood, B. Xu, L. Yu, K. Khor. Characterization of spark plasma sintered Ag nanopowders. Nanotechnology 21, 115707 (2010)CrossRef Y. Fu, C. Shearwood, B. Xu, L. Yu, K. Khor. Characterization of spark plasma sintered Ag nanopowders. Nanotechnology 21, 115707 (2010)CrossRef
24.
go back to reference M.L. Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanperä, M. Suhonen, H. Seppä, Electrical sintering of nanoparticle structures. Nanotechnology 19, 175201 (2008)CrossRef M.L. Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanperä, M. Suhonen, H. Seppä, Electrical sintering of nanoparticle structures. Nanotechnology 19, 175201 (2008)CrossRef
25.
go back to reference Y.H. Mei, Y. J Cao, G. Chen, X. Li, G. Lu, X. Chen. Rapid sintering nanosilver joint by pulse current for power electronics packaging. IEEE. Trans. Device Mater. Reliab. 13, 258–265 (2013)CrossRef Y.H. Mei, Y. J Cao, G. Chen, X. Li, G. Lu, X. Chen. Rapid sintering nanosilver joint by pulse current for power electronics packaging. IEEE. Trans. Device Mater. Reliab. 13, 258–265 (2013)CrossRef
26.
go back to reference Y.H. Mei, Y. J Cao, G. Chen, X. Li, G. Lu, X. Chen, Characterization and reliability of sinter nanosilver joints by a rapid current-assisted method for power electronic packaging. IEEE. Trans. Device Mater. Reliab. 14, (2014) 262–267CrossRef Y.H. Mei, Y. J Cao, G. Chen, X. Li, G. Lu, X. Chen, Characterization and reliability of sinter nanosilver joints by a rapid current-assisted method for power electronic packaging. IEEE. Trans. Device Mater. Reliab. 14, (2014) 262–267CrossRef
27.
go back to reference R. Chaim, Densification mechanisms in spark plasma sintering of nanocrystalline ceramics. Mater. Sci. Eng. A 443, 25–32 (2007)CrossRef R. Chaim, Densification mechanisms in spark plasma sintering of nanocrystalline ceramics. Mater. Sci. Eng. A 443, 25–32 (2007)CrossRef
28.
go back to reference T.G. Lei, J.N. Calata, G.Q. Lu, X. Chen, S.F. Luo, Low-temperature sintering of nanoscale silver paste for attaching large-area (>100mm2) chips. IEEE Trans. Compon. Packag. Manuf. Technol. 33, 98–104 (2010)CrossRef T.G. Lei, J.N. Calata, G.Q. Lu, X. Chen, S.F. Luo, Low-temperature sintering of nanoscale silver paste for attaching large-area (>100mm2) chips. IEEE Trans. Compon. Packag. Manuf. Technol. 33, 98–104 (2010)CrossRef
29.
go back to reference Y.H. Mei, G. Chen, Y. J Cao, X. Li, D. Han, X. Chen, Simplification of low-temperature sintering nanosilver for power electronics packaging. J. Electron. Mater 42, 1209–1218 (2013)CrossRef Y.H. Mei, G. Chen, Y. J Cao, X. Li, D. Han, X. Chen, Simplification of low-temperature sintering nanosilver for power electronics packaging. J. Electron. Mater 42, 1209–1218 (2013)CrossRef
30.
go back to reference Z.L. Li, F. Becker, M.P. Stoll, Z. Wan, Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images. Remote Sens. Environ 69, 197–214 (1999)CrossRef Z.L. Li, F. Becker, M.P. Stoll, Z. Wan, Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images. Remote Sens. Environ 69, 197–214 (1999)CrossRef
31.
go back to reference E. Helland, R. Occelli, L. Tadrist, Numerical study of cluster formation in a gas–particle circulating fluidized bed. Powder Technol 110, 210–221 (2000)CrossRef E. Helland, R. Occelli, L. Tadrist, Numerical study of cluster formation in a gas–particle circulating fluidized bed. Powder Technol 110, 210–221 (2000)CrossRef
32.
go back to reference W. Kingery, Densification during sintering in the presence of a liquid phase. I. Theory. J. Appl. Phys 30, 301–306 (1959)CrossRef W. Kingery, Densification during sintering in the presence of a liquid phase. I. Theory. J. Appl. Phys 30, 301–306 (1959)CrossRef
33.
go back to reference C. Tekmen, I. Ozdemir, U. Cocen, K. Onel, The mechanical response of Al–Si–Mg/SiCp composite: influence of porosity. Mater. Sci. Eng. A 360, 365–371 (2003)CrossRef C. Tekmen, I. Ozdemir, U. Cocen, K. Onel, The mechanical response of Al–Si–Mg/SiCp composite: influence of porosity. Mater. Sci. Eng. A 360, 365–371 (2003)CrossRef
34.
go back to reference Q. Mei, K. Lu, Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog. Mater. Sci. 52, 1175–1262 (2007)CrossRef Q. Mei, K. Lu, Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog. Mater. Sci. 52, 1175–1262 (2007)CrossRef
35.
go back to reference G. Allen, R. Bayles, W. Gile, W. Jesser, Small particle melting of pure metals. Thin Solid Films 144, 297–308 (1986)CrossRef G. Allen, R. Bayles, W. Gile, W. Jesser, Small particle melting of pure metals. Thin Solid Films 144, 297–308 (1986)CrossRef
36.
go back to reference A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, C.X. Xu, Low temperature sintering of Ag nanoparticles for flexible electronics packaging. Appl. Phys. Lett. 97, 153117 (2010)CrossRef A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, C.X. Xu, Low temperature sintering of Ag nanoparticles for flexible electronics packaging. Appl. Phys. Lett. 97, 153117 (2010)CrossRef
37.
go back to reference K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, O. Van der Biest. Modelling of the temperature distribution during field assisted sintering. Acta Mater. 53, 4379–4388 (2005)CrossRef K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, O. Van der Biest. Modelling of the temperature distribution during field assisted sintering. Acta Mater. 53, 4379–4388 (2005)CrossRef
38.
go back to reference K.S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, C. Wong. Thermal behavior of silver nanoparticles for low-temperature interconnect applications. J. Electron. Mater. 34, 168–175 (2005)CrossRef K.S. Moon, H. Dong, R. Maric, S. Pothukuchi, A. Hunt, Y. Li, C. Wong. Thermal behavior of silver nanoparticles for low-temperature interconnect applications. J. Electron. Mater. 34, 168–175 (2005)CrossRef
39.
go back to reference J. She, K. Ueno, Effect of additive content on liquid-phase sintering on silicon carbide ceramics. Mater. Res. Bull 34, 1629–1636 (1999)CrossRef J. She, K. Ueno, Effect of additive content on liquid-phase sintering on silicon carbide ceramics. Mater. Res. Bull 34, 1629–1636 (1999)CrossRef
40.
go back to reference Y. Wang, L. Zhou, M. Zhang, X. Chen, J.M. Liu, Z. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett. 84, 1731–1733 (2004)CrossRef Y. Wang, L. Zhou, M. Zhang, X. Chen, J.M. Liu, Z. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett. 84, 1731–1733 (2004)CrossRef
41.
go back to reference H.A. Alarifi, M. Atis, C. Özdoğan, A. Hu, M. Yavuz, Y. Zhou, Molecular dynamics simulation of sintering and surface premelting of silver nanoparticles. Mater. Trans. 54, 884–889 (2013)CrossRef H.A. Alarifi, M. Atis, C. Özdoğan, A. Hu, M. Yavuz, Y. Zhou, Molecular dynamics simulation of sintering and surface premelting of silver nanoparticles. Mater. Trans. 54, 884–889 (2013)CrossRef
42.
go back to reference X. Chen, R. Li, K. Qi, G.Q. Lu, Tensile behaviors and ratcheting effects of partially sintered chip-attachment films of a nanoscale silver paste. J. Electron. Mater. 37, 1574–1579 (2008)CrossRef X. Chen, R. Li, K. Qi, G.Q. Lu, Tensile behaviors and ratcheting effects of partially sintered chip-attachment films of a nanoscale silver paste. J. Electron. Mater. 37, 1574–1579 (2008)CrossRef
43.
go back to reference Z. Zhang, G.Q. Lu, Pressure-assisted low-temperature sintering of silver paste as an alternative die-attach solution to solder reflow. IEEE Trans. Electron. Packag. Manuf. 25, 279–283 (2002)CrossRef Z. Zhang, G.Q. Lu, Pressure-assisted low-temperature sintering of silver paste as an alternative die-attach solution to solder reflow. IEEE Trans. Electron. Packag. Manuf. 25, 279–283 (2002)CrossRef
44.
go back to reference T. Wang, X. Chen, G.Q. Lu, G.Y. Lei, Low-temperature sintering with nano-silver paste in die-attached interconnection. J. Electron. Mater. 36, 1333–1340 (2007)CrossRef T. Wang, X. Chen, G.Q. Lu, G.Y. Lei, Low-temperature sintering with nano-silver paste in die-attached interconnection. J. Electron. Mater. 36, 1333–1340 (2007)CrossRef
45.
go back to reference Y. Akada, H. Tatsumi, T. Yamaguchi, A. Hirose, T. Morita, E. Ide. Interfacial bonding mechanism using silver metallo-organic nanoparticles to bulk metals and observation of sintering behavior. Mater. Trans. 49, 1537–1545 (2008)CrossRef Y. Akada, H. Tatsumi, T. Yamaguchi, A. Hirose, T. Morita, E. Ide. Interfacial bonding mechanism using silver metallo-organic nanoparticles to bulk metals and observation of sintering behavior. Mater. Trans. 49, 1537–1545 (2008)CrossRef
46.
go back to reference D.H. Kim, C.H. Kim, Effect of heating rate on pore shrinkage in yttria-doped zirconia. J. Am. Ceram. Soc. 76, 1877–1878 (1993)CrossRef D.H. Kim, C.H. Kim, Effect of heating rate on pore shrinkage in yttria-doped zirconia. J. Am. Ceram. Soc. 76, 1877–1878 (1993)CrossRef
47.
go back to reference J.G. Bai, J.N. Calata, G. Lei, G.Q. Lu, Thermomechanical reliability of low-temperature sintered silver die-attachment. In: The tenth intersociety conference on thermal and thermomechanical phenomena in electronics systems, New York, (2006), pp 1126–1130 J.G. Bai, J.N. Calata, G. Lei, G.Q. Lu, Thermomechanical reliability of low-temperature sintered silver die-attachment. In: The tenth intersociety conference on thermal and thermomechanical phenomena in electronics systems, New York, (2006), pp 1126–1130
48.
go back to reference N. Wang, Z. Wang, K. Aust, U. Erb, Effect of grain size on mechanical properties of nanocrystalline materials. Acta Mater. 43, 519–528 (1995)CrossRef N. Wang, Z. Wang, K. Aust, U. Erb, Effect of grain size on mechanical properties of nanocrystalline materials. Acta Mater. 43, 519–528 (1995)CrossRef
49.
go back to reference J. Burke. Role of grain boundaries in sintering. J. Am. Ceram. Soc. 40, 80–85 (1957)CrossRef J. Burke. Role of grain boundaries in sintering. J. Am. Ceram. Soc. 40, 80–85 (1957)CrossRef
50.
go back to reference R. German, J. Lathrop, Simulation of spherical powder sintering by surface diffusion. J. Mater. Sci. 13, 921–929 (1978)CrossRef R. German, J. Lathrop, Simulation of spherical powder sintering by surface diffusion. J. Mater. Sci. 13, 921–929 (1978)CrossRef
51.
go back to reference N. Hirosaki, Y. Akimune, M. Mitomo, Effect of grain growth of β-Silicon Nitride on strength, weibull modulus, and fracture toughness. J. Am. Ceram. Soc. 76, 1892–1894 (1993)CrossRef N. Hirosaki, Y. Akimune, M. Mitomo, Effect of grain growth of β-Silicon Nitride on strength, weibull modulus, and fracture toughness. J. Am. Ceram. Soc. 76, 1892–1894 (1993)CrossRef
52.
go back to reference M.J. Mayo. Processing of nanocrystalline ceramics from ultrafine particles. Int. Mater. Rev. 41, 85–115 (1996)CrossRef M.J. Mayo. Processing of nanocrystalline ceramics from ultrafine particles. Int. Mater. Rev. 41, 85–115 (1996)CrossRef
Metadata
Title
Electric-current-assisted sintering of nanosilver paste for copper bonding
Authors
Yunhui Mei
Lin Li
Xin Li
Wanli Li
Haidong Yan
Yijing Xie
Publication date
02-03-2017
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 12/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-6649-4

Other articles of this Issue 12/2017

Journal of Materials Science: Materials in Electronics 12/2017 Go to the issue