Skip to main content
Top
Published in: Journal of Materials Science 2/2017

15-09-2016 | Original Paper

Electrical properties of NiFe2O4 epitaxial ultra-thin films

Authors: G. A. Boni, L. Hrib, S. B. Porter, G. Atcheson, I. Pintilie, K. Rode, L. Pintilie

Published in: Journal of Materials Science | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Epitaxial thin films of NiFe2O4 are fabricated by pulsed laser deposition on SrTiO3 substrate. Symmetrical capacitor-like structures are formed using SrRuO3 as bottom and top electrodes. Electrical characterizations, including current–voltage, capacitance–voltage and capacitance–frequency measurement, reveal a hysteresis-like behaviour for current and capacitance as function of voltage. This could be assigned to a resistive and/or capacitive switching. A “degradation” process takes place after repeated voltage cycling or after heating the sample to 400 K, leading to the stabilization of different resistive states. These features can be related to the changes observed in the capacitance–frequency characteristics, suggesting the presence of a relaxation mechanism at low frequencies, and can be associated with the presence of a deep donor-type level in the band-gap of the NiFe2O4 layer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hu J-M, Chen L-Q, Nan C-W (2016) Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv Mater 28:15–39CrossRef Hu J-M, Chen L-Q, Nan C-W (2016) Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv Mater 28:15–39CrossRef
2.
go back to reference Huang W, Yang S, Li X (2015) Multiferroic heterostructures and tunneling junctions. J Materiomics 1:263–284CrossRef Huang W, Yang S, Li X (2015) Multiferroic heterostructures and tunneling junctions. J Materiomics 1:263–284CrossRef
3.
go back to reference Mukherjee D, Hordagoda M (2014) Enhanced magnetism and ferroelectricity in epitaxial Pb(Zr0.52Ti0.48)O3/CoFe2O4/La0.7Sr0.3MnO3 multiferroic heterostructures grown using dual-laser ablation technique. J Appl Phys 115:17D707(1)–17D707(3) Mukherjee D, Hordagoda M (2014) Enhanced magnetism and ferroelectricity in epitaxial Pb(Zr0.52Ti0.48)O3/CoFe2O4/La0.7Sr0.3MnO3 multiferroic heterostructures grown using dual-laser ablation technique. J Appl Phys 115:17D707(1)–17D707(3)
4.
go back to reference Liu M, Obi O, Cai Z, Lou J, Yang G, Ziemer KS, Sun NX (2010) Electrical tuning of magnetism in Fe3O4/PZN–PT multiferroic heterostructures derived by reactive magnetron sputtering. J Appl Phys 107:073916(1)–073916(6) Liu M, Obi O, Cai Z, Lou J, Yang G, Ziemer KS, Sun NX (2010) Electrical tuning of magnetism in Fe3O4/PZN–PT multiferroic heterostructures derived by reactive magnetron sputtering. J Appl Phys 107:073916(1)–073916(6)
5.
go back to reference Liu M, Obi O, Lou J, Stoute S, Cai Z, Ziemer K, Sun NX (2009) Strong magnetoelectric coupling in ferrite/ferroelectric multiferroic heterostructures derived by low temperature spin-spray deposition. J Phys Appl Phys 42:045007(1)–045007(5) Liu M, Obi O, Lou J, Stoute S, Cai Z, Ziemer K, Sun NX (2009) Strong magnetoelectric coupling in ferrite/ferroelectric multiferroic heterostructures derived by low temperature spin-spray deposition. J Phys Appl Phys 42:045007(1)–045007(5)
6.
go back to reference Liu M, Obi O, Lou J, Chen Y, Cai Z, Stoute S, Espanol M, Lew M, Situ X, Ziemer KS, Harris VG, Sun NX (2009) Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Adv Funct Mater 19:1826–1831CrossRef Liu M, Obi O, Lou J, Chen Y, Cai Z, Stoute S, Espanol M, Lew M, Situ X, Ziemer KS, Harris VG, Sun NX (2009) Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Adv Funct Mater 19:1826–1831CrossRef
7.
go back to reference Chang K-S, Aronova M, Lin C-L, Murakami M, Yu M-H, Hattrick-Simpers J, Famodu O, Lee S, Ramesh R, Wuttig M, Takeuchi I, Gao C, Bendersky L (2004) Exploration of artificial multiferroic thin-film heterostructures using composition spreads. Appl Phys Lett 84:3091–3093CrossRef Chang K-S, Aronova M, Lin C-L, Murakami M, Yu M-H, Hattrick-Simpers J, Famodu O, Lee S, Ramesh R, Wuttig M, Takeuchi I, Gao C, Bendersky L (2004) Exploration of artificial multiferroic thin-film heterostructures using composition spreads. Appl Phys Lett 84:3091–3093CrossRef
8.
go back to reference Srinivasan G (2010) Magnetoelectric composites. Annu Rev Mater Res 40:153–178CrossRef Srinivasan G (2010) Magnetoelectric composites. Annu Rev Mater Res 40:153–178CrossRef
9.
go back to reference Sun NX, Srinivasan G (2012) Voltage control of magnetism in multiferroic heterostructures and devices. SPIN 02:1240004(1)–1240004(46)CrossRef Sun NX, Srinivasan G (2012) Voltage control of magnetism in multiferroic heterostructures and devices. SPIN 02:1240004(1)–1240004(46)CrossRef
10.
go back to reference Ortega N, Kumar A, Bhattacharya P, Majumder SB, Katiyar RS (2008) Impedance spectroscopy of multiferroic PbZr x Ti1−x O3/CoFe2O4 thin films. Phys Rev B 77:014111(1)–014111(10)CrossRef Ortega N, Kumar A, Bhattacharya P, Majumder SB, Katiyar RS (2008) Impedance spectroscopy of multiferroic PbZr x Ti1−x O3/CoFe2O4 thin films. Phys Rev B 77:014111(1)–014111(10)CrossRef
11.
go back to reference Dawber M, Rabe KM, Scott JF (2005) Physics of thin-film ferroelectric oxides. Rev Mod Phys 77:1083–1130CrossRef Dawber M, Rabe KM, Scott JF (2005) Physics of thin-film ferroelectric oxides. Rev Mod Phys 77:1083–1130CrossRef
12.
go back to reference Ramesh R (ed) (2013) Thin film ferroelectric materials and devices. Springer, New York Ramesh R (ed) (2013) Thin film ferroelectric materials and devices. Springer, New York
13.
go back to reference Greenwald S, Pickart SJ, Grannis FH (1954) Cation distribution and g factors of certain spinels containing Ni2+, Mn2+, Co2+, Al3+, Ga3+, and Fe3+. J Chem Phys 22:1597–1600CrossRef Greenwald S, Pickart SJ, Grannis FH (1954) Cation distribution and g factors of certain spinels containing Ni2+, Mn2+, Co2+, Al3+, Ga3+, and Fe3+. J Chem Phys 22:1597–1600CrossRef
14.
go back to reference Sze SM (1998) Physics of semiconductor devices, 2nd edn. Wiley, New York Sze SM (1998) Physics of semiconductor devices, 2nd edn. Wiley, New York
15.
go back to reference Mönch W (1994) Metal-semiconductor contacts: electronic properties. Surf Sci 299–300:928–944CrossRef Mönch W (1994) Metal-semiconductor contacts: electronic properties. Surf Sci 299–300:928–944CrossRef
16.
go back to reference Anjum S, Salman A, Rafique MS, Zia R, Riaz S, Iqbal H (2015) Investigation of magnetic anisotropy in cobalt chromium (CoCr0.5Fe1.5O4) spinel ferrite thin films. J Supercond Nov Magn 28:3147–3156CrossRef Anjum S, Salman A, Rafique MS, Zia R, Riaz S, Iqbal H (2015) Investigation of magnetic anisotropy in cobalt chromium (CoCr0.5Fe1.5O4) spinel ferrite thin films. J Supercond Nov Magn 28:3147–3156CrossRef
17.
go back to reference Sawa A (2008) Resistive switching in transition metal oxides. Mater Today 11:28–36CrossRef Sawa A (2008) Resistive switching in transition metal oxides. Mater Today 11:28–36CrossRef
18.
go back to reference Hu W, Zou L, Chen R, Xie W, Chen X, Qin N, Li S, Yang G, Bao D (2014) Resistive switching properties and physical mechanism of cobalt ferrite thin films. Appl Phys Lett 104:143502(1)–143502(5) Hu W, Zou L, Chen R, Xie W, Chen X, Qin N, Li S, Yang G, Bao D (2014) Resistive switching properties and physical mechanism of cobalt ferrite thin films. Appl Phys Lett 104:143502(1)–143502(5)
19.
go back to reference Wang Q, Zhu Y, Liu X, Zhao M, Wei M, Zhang F, Zhang Y, Sun B, Li M (2015) Study of resistive switching and magnetism modulation in the Pt/CoFe2O4/Nb:SrTiO3 heterostructures. Appl Phys Lett 107:063502(1)–063502(4) Wang Q, Zhu Y, Liu X, Zhao M, Wei M, Zhang F, Zhang Y, Sun B, Li M (2015) Study of resistive switching and magnetism modulation in the Pt/CoFe2O4/Nb:SrTiO3 heterostructures. Appl Phys Lett 107:063502(1)–063502(4)
20.
go back to reference Hu W, Qin N, Wu G, Lin Y, Li S, Bao D (2012) Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances. J Am Chem Soc 134:14658–14661CrossRef Hu W, Qin N, Wu G, Lin Y, Li S, Bao D (2012) Opportunity of spinel ferrite materials in nonvolatile memory device applications based on their resistive switching performances. J Am Chem Soc 134:14658–14661CrossRef
21.
go back to reference Kalon G, Shin YJ, Truong VG, Kalitsov A, Yang H (2011) The role of charge traps in inducing hysteresis: capacitance–voltage measurements on top gated bilayer graphene. Appl Phys Lett 99:083109(1)–083109(3)CrossRef Kalon G, Shin YJ, Truong VG, Kalitsov A, Yang H (2011) The role of charge traps in inducing hysteresis: capacitance–voltage measurements on top gated bilayer graphene. Appl Phys Lett 99:083109(1)–083109(3)CrossRef
22.
go back to reference Wang JC, Chiao SH, Lee CL, Lei TF, Lin YM, Wang MF, Chen SC, Yu CH, Liang MS (2002) A physical model for the hysteresis phenomenon of the ultrathin ZrO2 film. J Appl Phys 92:3936–3940CrossRef Wang JC, Chiao SH, Lee CL, Lei TF, Lin YM, Wang MF, Chen SC, Yu CH, Liang MS (2002) A physical model for the hysteresis phenomenon of the ultrathin ZrO2 film. J Appl Phys 92:3936–3940CrossRef
23.
go back to reference Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectrics Press Limited, London Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectrics Press Limited, London
24.
go back to reference Jeong DS, Thomas R, Katiyar RS, Scott JF, Kohlstedt H, Petraru A, Hwang CS (2012) Emerging memories: resistive switching mechanisms and current status. Rep Prog Phys 75:076502(1)–076502(31)CrossRef Jeong DS, Thomas R, Katiyar RS, Scott JF, Kohlstedt H, Petraru A, Hwang CS (2012) Emerging memories: resistive switching mechanisms and current status. Rep Prog Phys 75:076502(1)–076502(31)CrossRef
25.
go back to reference Shuai Y, Zhou S, Bürger D, Helm M, Schmidt H (2011) Nonvolatile bipolar resistive switching in Au/BiFeO3/Pt. J Appl Phys 109:124117(1)–124117(4) Shuai Y, Zhou S, Bürger D, Helm M, Schmidt H (2011) Nonvolatile bipolar resistive switching in Au/BiFeO3/Pt. J Appl Phys 109:124117(1)–124117(4)
26.
go back to reference Lee MH, Kim KM, Kim GH, Seok JY, Song SJ, Yoon JH, Hwang CS (2010) Study on the electrical conduction mechanism of bipolar resistive switching TiO2 thin films using impedance spectroscopy. Appl Phys Lett 96:152909(1)–152909(3) Lee MH, Kim KM, Kim GH, Seok JY, Song SJ, Yoon JH, Hwang CS (2010) Study on the electrical conduction mechanism of bipolar resistive switching TiO2 thin films using impedance spectroscopy. Appl Phys Lett 96:152909(1)–152909(3)
27.
go back to reference Chen C, Pan F, Wang ZS, Yang J, Zeng F (2012) Bipolar resistive switching with self-rectifying effects in Al/ZnO/Si structure. J Appl Phys 111:013702(1)–013702(6) Chen C, Pan F, Wang ZS, Yang J, Zeng F (2012) Bipolar resistive switching with self-rectifying effects in Al/ZnO/Si structure. J Appl Phys 111:013702(1)–013702(6)
28.
go back to reference Waser R, Aono M (2007) Nanoionics-based resistive switching memories. Nat Mater 6:833–840CrossRef Waser R, Aono M (2007) Nanoionics-based resistive switching memories. Nat Mater 6:833–840CrossRef
29.
go back to reference Gao B, Sun B, Zhang H, Liu L, Liu X, Han R, Kang J, Yu B (2009) Unified Physical Model of bipolar oxide-based resistive switching memory. IEEE Electron Device Lett 30:1326–1328CrossRef Gao B, Sun B, Zhang H, Liu L, Liu X, Han R, Kang J, Yu B (2009) Unified Physical Model of bipolar oxide-based resistive switching memory. IEEE Electron Device Lett 30:1326–1328CrossRef
30.
go back to reference Kim KM, Choi BJ, Lee MH, Kim GH, Song SJ, Seok JY, Yoon JH, Han S, Hwang CS (2011) A detailed understanding of the electronic bipolar resistance switching behavior in Pt/TiO2/Pt structure. Nanotechnology 22:254010(1)–254010(8) Kim KM, Choi BJ, Lee MH, Kim GH, Song SJ, Seok JY, Yoon JH, Han S, Hwang CS (2011) A detailed understanding of the electronic bipolar resistance switching behavior in Pt/TiO2/Pt structure. Nanotechnology 22:254010(1)–254010(8)
31.
go back to reference Zhou P, Yin M, Wan HJ, Lu HB, Tang TA, Lin YY (2009) Role of TaON interface for Cu x O resistive switching memory based on a combined model. Appl Phys Lett 94:053510(1)–053510(3) Zhou P, Yin M, Wan HJ, Lu HB, Tang TA, Lin YY (2009) Role of TaON interface for Cu x O resistive switching memory based on a combined model. Appl Phys Lett 94:053510(1)–053510(3)
32.
go back to reference Zafar S, Jones RE, Jiang B, White B, Chu P, Taylor D, Gillespie S (1998) Oxygen vacancy mobility determined from current measurements in thin Ba0.5Sr0.5TiO3 films. Appl Phys Lett 73:175–177CrossRef Zafar S, Jones RE, Jiang B, White B, Chu P, Taylor D, Gillespie S (1998) Oxygen vacancy mobility determined from current measurements in thin Ba0.5Sr0.5TiO3 films. Appl Phys Lett 73:175–177CrossRef
33.
go back to reference Pantelides ST (1978) The electronic structure of impurities and other point defects in semiconductors. Rev Mod Phys 50:797–858CrossRef Pantelides ST (1978) The electronic structure of impurities and other point defects in semiconductors. Rev Mod Phys 50:797–858CrossRef
34.
go back to reference Johnson MT, Kotula PG, Carter CB (1999) Growth of nickel ferrite thin films using pulsed-laser deposition. J Cryst Growth 206:299–307CrossRef Johnson MT, Kotula PG, Carter CB (1999) Growth of nickel ferrite thin films using pulsed-laser deposition. J Cryst Growth 206:299–307CrossRef
35.
go back to reference Summerfelt SR, Carter CB (1992) Interaction between dislocations and NiFe2O4 precipitates in a NiO matrix. Acta Metall Mater 40:2805–2812CrossRef Summerfelt SR, Carter CB (1992) Interaction between dislocations and NiFe2O4 precipitates in a NiO matrix. Acta Metall Mater 40:2805–2812CrossRef
Metadata
Title
Electrical properties of NiFe2O4 epitaxial ultra-thin films
Authors
G. A. Boni
L. Hrib
S. B. Porter
G. Atcheson
I. Pintilie
K. Rode
L. Pintilie
Publication date
15-09-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 2/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0376-8

Other articles of this Issue 2/2017

Journal of Materials Science 2/2017 Go to the issue

Premium Partners