Skip to main content
Top
Published in: Journal of Materials Science 2/2017

16-09-2016 | Original Paper

Improved lithium adsorption in boron- and nitrogen-substituted graphene derivatives

Authors: Murugan Lalitha, Shivaraja Selva Mahadevan, Senthilkumar Lakshmipathi

Published in: Journal of Materials Science | Issue 2/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We present the results from density functional theory calculations of the lithium adsorption on various forms of boron- and nitrogen-doped graphene derivatives. Encouraging results are noticed for the lithium adsorption on the boron-doped graphyne model. The acetylenic linkage increases the lithium adsorption affinity but decreases the gravimetric densities marginally in bare, boron/nitrogen-doped graphene derivatives. From lithiation potential, gravimetric density, and specific capacity values, we notice boronated graphyne as a highly suitable anode material for Li-ion batteries.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
5.
go back to reference van Schalkwijk W, Scrosati B (2004) Advances in lithium–ion batteries. KluwerAcademic/Plenum, Boston van Schalkwijk W, Scrosati B (2004) Advances in lithium–ion batteries. KluwerAcademic/Plenum, Boston
10.
14.
go back to reference Garay-Tapia AM, Romero AH, Barone V (2012) Lithium adsorption on graphene: from isolated adatoms to metallic sheets. J Chem Theory Comput 8(3):1064–1071. doi:10.1021/ct300042p CrossRef Garay-Tapia AM, Romero AH, Barone V (2012) Lithium adsorption on graphene: from isolated adatoms to metallic sheets. J Chem Theory Comput 8(3):1064–1071. doi:10.​1021/​ct300042p CrossRef
16.
go back to reference Yoo E, Kim J, Hosono E, Zhou H-S, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8(8):2277–2282. doi:10.1021/nl800957b CrossRef Yoo E, Kim J, Hosono E, Zhou H-S, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8(8):2277–2282. doi:10.​1021/​nl800957b CrossRef
17.
go back to reference Lee SW, Gallant BM, Byon HR, Hammond PT, Shao-Horn Y (2011) Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium–ion batteries and electrochemical capacitors. Energy Environ Sci 4(6):1972–1985. doi:10.1039/c0ee00642d CrossRef Lee SW, Gallant BM, Byon HR, Hammond PT, Shao-Horn Y (2011) Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium–ion batteries and electrochemical capacitors. Energy Environ Sci 4(6):1972–1985. doi:10.​1039/​c0ee00642d CrossRef
20.
21.
go back to reference Han SS, Goddard WA (2007) Lithium-doped metal-organic frameworks for reversible H2 storage at ambient temperature. J Am Chem Soc 129(27):8422–8423. doi:10.1021/ja072599+ CrossRef Han SS, Goddard WA (2007) Lithium-doped metal-organic frameworks for reversible H2 storage at ambient temperature. J Am Chem Soc 129(27):8422–8423. doi:10.​1021/​ja072599+ CrossRef
24.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200. doi:10.1038/nature04233 CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200. doi:10.​1038/​nature04233 CrossRef
25.
go back to reference Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Room-temperature quantum hall effect in graphene. Science 315(5817):1379–1379. doi:10.1126/science.1137201 CrossRef Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Room-temperature quantum hall effect in graphene. Science 315(5817):1379–1379. doi:10.​1126/​science.​1137201 CrossRef
26.
31.
go back to reference Srinivasu K, Ghosh SK (2012) Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications. J Phys Chem C 116(9):5951–5956. doi:10.1021/jp212181h CrossRef Srinivasu K, Ghosh SK (2012) Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications. J Phys Chem C 116(9):5951–5956. doi:10.​1021/​jp212181h CrossRef
33.
go back to reference Zhang H, Zhao M, He X, Wang Z, Zhang X, Liu X (2011) High mobility and high storage capacity of lithium in sp–sp2 hybridized carbon network: the case of graphyne. J Phys Chem C 115(17):8845–8850. doi:10.1021/jp201062m CrossRef Zhang H, Zhao M, He X, Wang Z, Zhang X, Liu X (2011) High mobility and high storage capacity of lithium in sp–sp2 hybridized carbon network: the case of graphyne. J Phys Chem C 115(17):8845–8850. doi:10.​1021/​jp201062m CrossRef
34.
go back to reference Chandra Shekar S, Swathi RS (2013) Rattling motion of alkali metal ions through the cavities of model compounds of graphyne and graphdiyne. J Phys Chem A 117(36):8632–8641. doi:10.1021/jp402896v CrossRef Chandra Shekar S, Swathi RS (2013) Rattling motion of alkali metal ions through the cavities of model compounds of graphyne and graphdiyne. J Phys Chem A 117(36):8632–8641. doi:10.​1021/​jp402896v CrossRef
35.
go back to reference Wang H, Zhang C, Liu Z, Wang L, Han P, Xu H, Zhang K, Dong S, Yao J, Cui G (2011) Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem 21(14):5430–5434. doi:10.1039/c1jm00049g CrossRef Wang H, Zhang C, Liu Z, Wang L, Han P, Xu H, Zhang K, Dong S, Yao J, Cui G (2011) Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem 21(14):5430–5434. doi:10.​1039/​c1jm00049g CrossRef
36.
go back to reference Yu Y-X (2013) Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium–ion batteries? Phys Chem Chem Phys 15(39):16819–16827. doi:10.1039/c3cp51689j CrossRef Yu Y-X (2013) Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium–ion batteries? Phys Chem Chem Phys 15(39):16819–16827. doi:10.​1039/​c3cp51689j CrossRef
37.
go back to reference Ma C, Shao X, Cao D (2012) Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J Mater Chem 22(18):8911–8915. doi:10.1039/c2jm00166g CrossRef Ma C, Shao X, Cao D (2012) Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J Mater Chem 22(18):8911–8915. doi:10.​1039/​c2jm00166g CrossRef
38.
go back to reference Mukhopadhyay I, Hoshino N, Kawasaki S, Okino F, Hsu WK, Touhara H (2002) Electrochemical Li insertion in B-doped multiwall carbon nanotubes. J Electrochem Soc 149(1):A39–A44CrossRef Mukhopadhyay I, Hoshino N, Kawasaki S, Okino F, Hsu WK, Touhara H (2002) Electrochemical Li insertion in B-doped multiwall carbon nanotubes. J Electrochem Soc 149(1):A39–A44CrossRef
39.
go back to reference Zhou Z, Zhao J, Gao X, Chen Z, Yan J, von Ragué Schleyer P, Morinaga M (2005) Do composite single-walled nanotubes have enhanced capability for lithium storage? Chem Mater 17(5):992–1000. doi:10.1021/cm048746+ CrossRef Zhou Z, Zhao J, Gao X, Chen Z, Yan J, von Ragué Schleyer P, Morinaga M (2005) Do composite single-walled nanotubes have enhanced capability for lithium storage? Chem Mater 17(5):992–1000. doi:10.​1021/​cm048746+ CrossRef
40.
go back to reference Lu R, Rao D, Meng Z, Zhang X, Xu G, Liu Y, Kan E, Xiao C, Deng K (2013) Boron-substituted graphyne as a versatile material with high storage capacities of Li and H2: a multiscale theoretical study. Phys Chem Chem Phys 15(38):16120–16126. doi:10.1039/c3cp52364k CrossRef Lu R, Rao D, Meng Z, Zhang X, Xu G, Liu Y, Kan E, Xiao C, Deng K (2013) Boron-substituted graphyne as a versatile material with high storage capacities of Li and H2: a multiscale theoretical study. Phys Chem Chem Phys 15(38):16120–16126. doi:10.​1039/​c3cp52364k CrossRef
42.
go back to reference Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620. doi:10.1039/b810189b CrossRef Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys Chem Chem Phys 10(44):6615–6620. doi:10.​1039/​b810189b CrossRef
43.
go back to reference Umadevi D, Sastry GN (2011) Quantum mechanical study of physisorption of nucleobases on carbon materials: graphene versus carbon nanotubes. J Phys Chem Lett 2(13):1572–1576. doi:10.1021/jz200705w CrossRef Umadevi D, Sastry GN (2011) Quantum mechanical study of physisorption of nucleobases on carbon materials: graphene versus carbon nanotubes. J Phys Chem Lett 2(13):1572–1576. doi:10.​1021/​jz200705w CrossRef
44.
45.
go back to reference Maroulis G, Xenides D, Hohm U, Loose A (2001) Dipole, dipole–quadrupole, and dipole–octopole polarizability of adamantane, C10H16, from refractive index measurements, depolarized collision-induced light scattering, conventional ab initio and density functional theory calculations. J Chem Phys 115(17):7957–7967. doi:10.1063/1.1410392 CrossRef Maroulis G, Xenides D, Hohm U, Loose A (2001) Dipole, dipole–quadrupole, and dipole–octopole polarizability of adamantane, C10H16, from refractive index measurements, depolarized collision-induced light scattering, conventional ab initio and density functional theory calculations. J Chem Phys 115(17):7957–7967. doi:10.​1063/​1.​1410392 CrossRef
46.
go back to reference Karamanis P, Maroulis G (2011) An ab initio study of CX3-substitution (X = H, F, Cl, Br, I) effects on the static electric polarizability and hyperpolarizability of diacetylene. J Phys Org Chem 24(7):588–599. doi:10.1002/poc.1797 CrossRef Karamanis P, Maroulis G (2011) An ab initio study of CX3-substitution (X = H, F, Cl, Br, I) effects on the static electric polarizability and hyperpolarizability of diacetylene. J Phys Org Chem 24(7):588–599. doi:10.​1002/​poc.​1797 CrossRef
47.
go back to reference Karamanis P, Maroulis G (2003) Single (C–C) and triple (C–C) bond-length dependence of the static electric polarizability and hyperpolarizability of H-C–C–C–C–H. Chem Phys Lett 376(3–4):403–410. doi:10.1016/S0009-2614(03)00784-X CrossRef Karamanis P, Maroulis G (2003) Single (C–C) and triple (C–C) bond-length dependence of the static electric polarizability and hyperpolarizability of H-C–C–C–C–H. Chem Phys Lett 376(3–4):403–410. doi:10.​1016/​S0009-2614(03)00784-X CrossRef
48.
go back to reference Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford
49.
50.
go back to reference te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22(9):931–967. doi:10.1002/jcc.1056 CrossRef te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) Chemistry with ADF. J Comput Chem 22(9):931–967. doi:10.​1002/​jcc.​1056 CrossRef
51.
go back to reference Jiao Y, Du A, Hankel M, Zhu Z, Rudolph V, Smith SC (2011) Graphdiyne: a versatile nanomaterial for electronics and hydrogen purification. Chem Commun 47(43):11843–11845. doi:10.1039/c1cc15129k CrossRef Jiao Y, Du A, Hankel M, Zhu Z, Rudolph V, Smith SC (2011) Graphdiyne: a versatile nanomaterial for electronics and hydrogen purification. Chem Commun 47(43):11843–11845. doi:10.​1039/​c1cc15129k CrossRef
52.
go back to reference Lazar P, Zboril R, Pumera M, Otyepka M (2014) Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties. Phys Chem Chem Phys 16(27):14231–14235. doi:10.1039/c4cp01638f CrossRef Lazar P, Zboril R, Pumera M, Otyepka M (2014) Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties. Phys Chem Chem Phys 16(27):14231–14235. doi:10.​1039/​c4cp01638f CrossRef
56.
Metadata
Title
Improved lithium adsorption in boron- and nitrogen-substituted graphene derivatives
Authors
Murugan Lalitha
Shivaraja Selva Mahadevan
Senthilkumar Lakshmipathi
Publication date
16-09-2016
Publisher
Springer US
Published in
Journal of Materials Science / Issue 2/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-016-0378-6

Other articles of this Issue 2/2017

Journal of Materials Science 2/2017 Go to the issue

Premium Partners