Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

Electrification of Biotechnology: Status quo

Authors : Falk Harnisch, Dirk Holtmann

Published in: Bioelectrosynthesis

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Interfacing microbial, enzymatic, and electrochemical transformations has led to the new field of electrobiotechnology. Among the plethora of applications (including electric energy generation via pollutant removal), the synthesis of chemicals and energy carriers (e.g. H2) has sparked great interest. The linked transformation of chemical and electric energy may allow the joint utilization of renewable feedstock and sustainable electricity to gain commodities and fuels. The overall field is now referred to as bioelectrosynthesis and is a focus of this book. Starting with the rationale for using bioelectrosynthesis in a bioeconomy, this chapter provides a brief introduction to the field of electrobiotechnology. Subsequently, the chapter discusses the framework for bioelectrosynthesis, which is based on enzymes as well as microorganisms, and provides a definition of bioelectrosynthesis. The chapter concludes with a short overview on the history of the field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Gulliver JS (2012) Transport and fate of chemicals in the environment - selected entries from the encyclopedia of sustainability science and technology. Springer, New York Gulliver JS (2012) Transport and fate of chemicals in the environment - selected entries from the encyclopedia of sustainability science and technology. Springer, New York
3.
go back to reference Sillanpää M, Ncibi C (2017) A sustainable bioeconomy - the green industrial revolution. Springer Sillanpää M, Ncibi C (2017) A sustainable bioeconomy - the green industrial revolution. Springer
4.
go back to reference Sydow A et al (2014) Electroactive bacteria—molecular mechanisms and genetic tools. Appl Microbiol Biotechnol 98(20):8481–8495CrossRef Sydow A et al (2014) Electroactive bacteria—molecular mechanisms and genetic tools. Appl Microbiol Biotechnol 98(20):8481–8495CrossRef
5.
go back to reference Krieg T et al (2014) Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol 32(12):645–655CrossRef Krieg T et al (2014) Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol 32(12):645–655CrossRef
6.
go back to reference Schröder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energy Environ Sci 8(2):513–519CrossRef Schröder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energy Environ Sci 8(2):513–519CrossRef
7.
go back to reference Logan BE (2008) Microbial fuel cells. Wiley, Hoboken Logan BE (2008) Microbial fuel cells. Wiley, Hoboken
8.
go back to reference Scott K, Yu EH (2015) Microbial electrochemical and fuel cells. Woodhead Publishing, Sawston Scott K, Yu EH (2015) Microbial electrochemical and fuel cells. Woodhead Publishing, Sawston
9.
go back to reference Rasmussen M, Abdellaoui S, Minteer SD (2016) Enzymatic biofuel cells: 30 years of critical advancements. Biosens Bioelectron 76:91–102CrossRef Rasmussen M, Abdellaoui S, Minteer SD (2016) Enzymatic biofuel cells: 30 years of critical advancements. Biosens Bioelectron 76:91–102CrossRef
10.
go back to reference Minteer SD, Liaw BY, Cooney MJ (2007) Enzyme-based biofuel cells. Curr Opin Biotechnol 18(3):228–234CrossRef Minteer SD, Liaw BY, Cooney MJ (2007) Enzyme-based biofuel cells. Curr Opin Biotechnol 18(3):228–234CrossRef
11.
go back to reference Hiegemann H et al (2016) An integrated 45L pilot microbial fuel cell system at a full-scale wastewater treatment plant. Bioresour Technol 218:115–122CrossRef Hiegemann H et al (2016) An integrated 45L pilot microbial fuel cell system at a full-scale wastewater treatment plant. Bioresour Technol 218:115–122CrossRef
12.
go back to reference Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85(6):1665–1671CrossRef Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85(6):1665–1671CrossRef
13.
go back to reference Mu Y et al (2011) Dehalogenation of iodinated X-ray contrast media in a bioelectrochemical system. Environ Sci Technol 45(2):782–788CrossRef Mu Y et al (2011) Dehalogenation of iodinated X-ray contrast media in a bioelectrochemical system. Environ Sci Technol 45(2):782–788CrossRef
14.
go back to reference Wang A-J et al (2011) Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode. Environ Sci Technol 45(23):10186–10193CrossRef Wang A-J et al (2011) Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode. Environ Sci Technol 45(23):10186–10193CrossRef
15.
go back to reference Pous N et al (2015) Monitoring and engineering reactor microbiomes of denitrifying bioelectrochemical systems. RSC Adv 5(84):68326–68333CrossRef Pous N et al (2015) Monitoring and engineering reactor microbiomes of denitrifying bioelectrochemical systems. RSC Adv 5(84):68326–68333CrossRef
16.
go back to reference Lu L et al (2014) Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil. Environ Sci Technol 48(7):4021–4029CrossRef Lu L et al (2014) Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil. Environ Sci Technol 48(7):4021–4029CrossRef
17.
go back to reference Gregory KB, Lovley DR (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39(22):8943–8947CrossRef Gregory KB, Lovley DR (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39(22):8943–8947CrossRef
19.
go back to reference Cao X et al (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43(18):7148–7152CrossRef Cao X et al (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43(18):7148–7152CrossRef
20.
go back to reference Turner AP (2013) Biosensors: sense and sensibility. Chem Soc Rev 42(8):3184–3196CrossRef Turner AP (2013) Biosensors: sense and sensibility. Chem Soc Rev 42(8):3184–3196CrossRef
30.
31.
go back to reference Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York
32.
go back to reference Nevin KP et al (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1(2):e00103–e00110CrossRef Nevin KP et al (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1(2):e00103–e00110CrossRef
33.
go back to reference Ni Y, Holtmann D, Hollmann F (2014) How green is biocatalysis? To calculate is to know. ChemCatChem 6(4):930–943CrossRef Ni Y, Holtmann D, Hollmann F (2014) How green is biocatalysis? To calculate is to know. ChemCatChem 6(4):930–943CrossRef
34.
go back to reference Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond B 84:260–276CrossRef Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond B 84:260–276CrossRef
35.
go back to reference Schröder U (2011) Discover the possibilities: microbial bioelectrochemical systems and the revival of a 100-year-old discovery. J Solid State Electrochem 15(7):1481–1486CrossRef Schröder U (2011) Discover the possibilities: microbial bioelectrochemical systems and the revival of a 100-year-old discovery. J Solid State Electrochem 15(7):1481–1486CrossRef
36.
go back to reference Cohen B (1931) The bacterial culture as electrical half-cell. J Bacteriol 21:18–19 Cohen B (1931) The bacterial culture as electrical half-cell. J Bacteriol 21:18–19
37.
go back to reference Canfield JH, Goldner BH (1964) Research on applied bioelectrochemistry. NASA Technical Report Magna Corporation, Anaheim, p 127 Canfield JH, Goldner BH (1964) Research on applied bioelectrochemistry. NASA Technical Report Magna Corporation, Anaheim, p 127
38.
go back to reference Ellis GE, Sweeny EE (1963) Biochemical fuel cells. In: NASA Technical Report The Marquardt Corporation Ellis GE, Sweeny EE (1963) Biochemical fuel cells. In: NASA Technical Report The Marquardt Corporation
39.
go back to reference Wilkinson S, Campbell C (1996) Green bug robots - renewable environmental power for miniature robots. In: Proceedings of 4th IASTED international conference, robotics and manufacturing, Honolulu Wilkinson S, Campbell C (1996) Green bug robots - renewable environmental power for miniature robots. In: Proceedings of 4th IASTED international conference, robotics and manufacturing, Honolulu
40.
go back to reference Kim B et al (2001) A biofuel cell using wastewater and active sludge for wastewater treatment. International patent: WO0104061 Kim B et al (2001) A biofuel cell using wastewater and active sludge for wastewater treatment. International patent: WO0104061
41.
go back to reference Hongo M, Iwahara M (1979) Application of electro-energizing method to l-glutamic acid fermentation. Agric Biol Chem 43(10):2075–2081 Hongo M, Iwahara M (1979) Application of electro-energizing method to l-glutamic acid fermentation. Agric Biol Chem 43(10):2075–2081
42.
go back to reference Ghosh B, Zeikus J (1987) Electroenergization for control of hydrogen transformation in acetone butanol fermentations. In: Abstracts of papers of the American Chemical Society. Amer Chemical Soc 1155 16TH St, NW, Washington, DC 20036 Ghosh B, Zeikus J (1987) Electroenergization for control of hydrogen transformation in acetone butanol fermentations. In: Abstracts of papers of the American Chemical Society. Amer Chemical Soc 1155 16TH St, NW, Washington, DC 20036
43.
go back to reference Emde R, Schink B (1990) Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system. Appl Environ Microbiol 56(9):2771–2776PubMedPubMedCentral Emde R, Schink B (1990) Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system. Appl Environ Microbiol 56(9):2771–2776PubMedPubMedCentral
44.
go back to reference Villano M et al (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 101(9):3085–3090CrossRef Villano M et al (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 101(9):3085–3090CrossRef
45.
go back to reference Heineman WR, Jensen WB (2006) Leland C. Clark Jr. (1918–2005). Biosens Bioelectron 21(8):1403–1404CrossRef Heineman WR, Jensen WB (2006) Leland C. Clark Jr. (1918–2005). Biosens Bioelectron 21(8):1403–1404CrossRef
46.
go back to reference Guilbault GG, Montalvo Jr JG (1969) Urea-specific enzyme electrode. J Am Chem Soc 91(8):2164–2165CrossRef Guilbault GG, Montalvo Jr JG (1969) Urea-specific enzyme electrode. J Am Chem Soc 91(8):2164–2165CrossRef
47.
go back to reference Wienkamp R, Steckhan E (1982) Indirect electrochemical regeneration of NADH by a Bipyridinerhodium (I) complex as electron-transfer agent. Angew Chem Int Ed 21(10):782–783CrossRef Wienkamp R, Steckhan E (1982) Indirect electrochemical regeneration of NADH by a Bipyridinerhodium (I) complex as electron-transfer agent. Angew Chem Int Ed 21(10):782–783CrossRef
Metadata
Title
Electrification of Biotechnology: Status quo
Authors
Falk Harnisch
Dirk Holtmann
Copyright Year
2019
DOI
https://doi.org/10.1007/10_2017_41

Premium Partners