Skip to main content
Top

2019 | OriginalPaper | Chapter

Extracellular Electron Transfer and Biosensors

Authors : Francesca Simonte, Gunnar Sturm, Johannes Gescher, Katrin Sturm-Richter

Published in: Bioelectrosynthesis

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter summarizes in the beginning our current understanding of extracellular electron transport processes in organisms belonging to the genera Shewanella and Geobacter. Organisms belonging to these genera developed strategies to transport respiratory electrons to the cell surface that are defined by modules of which some seem to be rather unique for one or the other genus while others are similar. We use this overview regarding our current knowledge of extracellular electron transfer to explain the physiological interaction of microorganisms in direct interspecies electron transfer, a process in which one organism basically comprises the electron acceptor for another microbe and that depends also on extended electron transport chains. This analysis of mechanisms for the transport of respiratory electrons to insoluble electron acceptors ends with an overview of questions that remain so far unanswered. Moreover, we use the description of the biochemistry of extracellular electron transport to explain the fundamentals of biosensors based on this process and give an overview regarding their status of development and applicability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbiological evidence for Fe(III) reduction on early earth. Nature 395:65–67PubMed Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbiological evidence for Fe(III) reduction on early earth. Nature 395:65–67PubMed
2.
go back to reference Prokhorova A, Sturm-Richter K, Doetsch A, Gescher J (2017) Resilience, dynamics and interactions within a multi-species exoelectrogenic model biofilm community. Appl Environ Microbiol 83(6):e03033–e03016PubMedPubMedCentral Prokhorova A, Sturm-Richter K, Doetsch A, Gescher J (2017) Resilience, dynamics and interactions within a multi-species exoelectrogenic model biofilm community. Appl Environ Microbiol 83(6):e03033–e03016PubMedPubMedCentral
3.
go back to reference Richter K, Schicklberger M, Gescher J (2012) Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl Environ Microbiol 78:913–921PubMedPubMedCentral Richter K, Schicklberger M, Gescher J (2012) Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appl Environ Microbiol 78:913–921PubMedPubMedCentral
4.
go back to reference Sturm G, Dolch K, Richter K, Rautenberg M, Gescher J (2012) Metal reducers and reduction targets. A short survey about the distribution of dissimilatory metal reducers and the multitude of terminal electron acceptors. Microbial metal respiration: from geochemistry to potential applications. Springer-Verlag, Heidelberg, pp 129–159 Sturm G, Dolch K, Richter K, Rautenberg M, Gescher J (2012) Metal reducers and reduction targets. A short survey about the distribution of dissimilatory metal reducers and the multitude of terminal electron acceptors. Microbial metal respiration: from geochemistry to potential applications. Springer-Verlag, Heidelberg, pp 129–159
5.
go back to reference Firer-Sherwood M, Pulcu GS, Elliott SJ (2008) Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window. J Biol Inorg Chem 13:849–854PubMed Firer-Sherwood M, Pulcu GS, Elliott SJ (2008) Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window. J Biol Inorg Chem 13:849–854PubMed
6.
go back to reference Nevin KP, Lovley DR (2002) Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol J 19:141–159 Nevin KP, Lovley DR (2002) Mechanisms for Fe(III) oxide reduction in sedimentary environments. Geomicrobiol J 19:141–159
7.
go back to reference Straub KL, Schink B (2003) Evaluation of electron-shuttling compounds in microbial ferric iron reduction. FEMS Microbiol Lett 220:229–233PubMed Straub KL, Schink B (2003) Evaluation of electron-shuttling compounds in microbial ferric iron reduction. FEMS Microbiol Lett 220:229–233PubMed
8.
go back to reference Aklujkar M, Coppi MV, Leang C et al (2013) Proteins involved in electron transfer to Fe(III) and Mn(IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens. Microbiology 159:515–535PubMed Aklujkar M, Coppi MV, Leang C et al (2013) Proteins involved in electron transfer to Fe(III) and Mn(IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens. Microbiology 159:515–535PubMed
9.
go back to reference Butler JE, Young ND, Lovley DR (2010) Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes. BMC Genomics 11:40PubMedPubMedCentral Butler JE, Young ND, Lovley DR (2010) Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes. BMC Genomics 11:40PubMedPubMedCentral
10.
go back to reference Holmes DE, Chaudhuri SK, Nevin KP et al (2006) Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ Microbiol 8:1805–1815PubMed Holmes DE, Chaudhuri SK, Nevin KP et al (2006) Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ Microbiol 8:1805–1815PubMed
11.
go back to reference Mehta T, Coppi MV, Childers SE, Lovley DR (2005) Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl Environ Microbiol 71:8634–8641PubMedPubMedCentral Mehta T, Coppi MV, Childers SE, Lovley DR (2005) Outer membrane c-type cytochromes required for Fe(III) and Mn(IV) oxide reduction in Geobacter sulfurreducens. Appl Environ Microbiol 71:8634–8641PubMedPubMedCentral
12.
go back to reference Ding YHR, Hixson KK, Giometti CS et al (2006) The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions. Biochim Biophys Acta Proteins Proteomics 1764:1198–1206 Ding YHR, Hixson KK, Giometti CS et al (2006) The proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions. Biochim Biophys Acta Proteins Proteomics 1764:1198–1206
13.
go back to reference Aklujkar M, Krushkal J, DiBartolo G, Lapidus A, Land ML, Lovley DR (2009) The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens. BMC Microbiol 9(1):109PubMedPubMedCentral Aklujkar M, Krushkal J, DiBartolo G, Lapidus A, Land ML, Lovley DR (2009) The genome sequence of Geobacter metallireducens: features of metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens. BMC Microbiol 9(1):109PubMedPubMedCentral
14.
go back to reference Morgado L, Saraiva IH, Louro RO, Salgueiro CA (2010) Orientation of the axial ligands and magnetic properties of the hemes in the triheme ferricytochrome PpcA from G. sulfurreducens determined by paramagnetic NMR. FEBS Lett 584:3442–3445PubMed Morgado L, Saraiva IH, Louro RO, Salgueiro CA (2010) Orientation of the axial ligands and magnetic properties of the hemes in the triheme ferricytochrome PpcA from G. sulfurreducens determined by paramagnetic NMR. FEBS Lett 584:3442–3445PubMed
15.
go back to reference Zacharoff L, Chan CH, Bond DR (2016) Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens. Bioelectrochemistry 107:7–13PubMed Zacharoff L, Chan CH, Bond DR (2016) Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens. Bioelectrochemistry 107:7–13PubMed
16.
go back to reference Levar CE, Chan CH, Mehta-Kolte MG, Bond DR (2014) An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors. MBio 5(6):e02034–e02014PubMedPubMedCentral Levar CE, Chan CH, Mehta-Kolte MG, Bond DR (2014) An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors. MBio 5(6):e02034–e02014PubMedPubMedCentral
17.
go back to reference Seidel J, Hoffmann M, Ellis KE et al (2012) MacA is a second cytochrome c peroxidase of Geobacter sulfurreducens. Biochemistry 51:2747–2756PubMedPubMedCentral Seidel J, Hoffmann M, Ellis KE et al (2012) MacA is a second cytochrome c peroxidase of Geobacter sulfurreducens. Biochemistry 51:2747–2756PubMedPubMedCentral
18.
go back to reference Qian XL, Reguera G, Mester T, Lovley DR (2007) Evidence that OmcB and OmpB of Geobacter sulfurreducens are outer membrane surface proteins. FEMS Microbiol Lett 277:21–27PubMed Qian XL, Reguera G, Mester T, Lovley DR (2007) Evidence that OmcB and OmpB of Geobacter sulfurreducens are outer membrane surface proteins. FEMS Microbiol Lett 277:21–27PubMed
19.
go back to reference Leang C, Coppi MV, Lovley DR (2003) OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J Bacteriol 185:2096–2103PubMedPubMedCentral Leang C, Coppi MV, Lovley DR (2003) OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J Bacteriol 185:2096–2103PubMedPubMedCentral
20.
go back to reference Liu X, Tremblay PL, Malvankar NS, Nevin KP, Lovley DR, Vargas M (2014) A Geobacter sulfurreducens strain expressing Pseudomonas aeruginosa type IV pili localizes OmcS on Pili but is deficient in Fe(III) oxide reduction and current production. Appl Environ Microbiol 80:1219–1224PubMedPubMedCentral Liu X, Tremblay PL, Malvankar NS, Nevin KP, Lovley DR, Vargas M (2014) A Geobacter sulfurreducens strain expressing Pseudomonas aeruginosa type IV pili localizes OmcS on Pili but is deficient in Fe(III) oxide reduction and current production. Appl Environ Microbiol 80:1219–1224PubMedPubMedCentral
21.
go back to reference Liu YM, Fredrickson JK, Zachara JM, Shi L (2015) Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA. Front Microbiol 6:–1075 Liu YM, Fredrickson JK, Zachara JM, Shi L (2015) Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA. Front Microbiol 6:–1075
22.
go back to reference Liu YM, Wang ZM, Liu J et al (2014) A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA. Environ Microbiol Rep 6:776–785PubMedPubMedCentral Liu YM, Wang ZM, Liu J et al (2014) A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA. Environ Microbiol Rep 6:776–785PubMedPubMedCentral
23.
go back to reference Hartshorne RS, Reardon CL, Ross D et al (2009) Characterization of an electron conduit between bacteria and the extracellular environment. Proc Natl Acad Sci U S A 106:22169–22174PubMedPubMedCentral Hartshorne RS, Reardon CL, Ross D et al (2009) Characterization of an electron conduit between bacteria and the extracellular environment. Proc Natl Acad Sci U S A 106:22169–22174PubMedPubMedCentral
24.
go back to reference Qian XL, Mester T, Morgado L et al (2011) Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens. BBA-Bioenergetics 1807:404–412PubMed Qian XL, Mester T, Morgado L et al (2011) Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens. BBA-Bioenergetics 1807:404–412PubMed
25.
go back to reference Leang C, Qian XL, Mester T, Lovley DR (2010) Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens. Appl Environ Microbiol 76:4080–4084PubMedPubMedCentral Leang C, Qian XL, Mester T, Lovley DR (2010) Alignment of the c-type cytochrome OmcS along pili of Geobacter sulfurreducens. Appl Environ Microbiol 76:4080–4084PubMedPubMedCentral
26.
go back to reference Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413–1415PubMed Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413–1415PubMed
27.
go back to reference Nevin KP, Kim BC, Glaven RH et al (2009) Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS One 4:e5628PubMedPubMedCentral Nevin KP, Kim BC, Glaven RH et al (2009) Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS One 4:e5628PubMedPubMedCentral
28.
go back to reference Strycharz SM, Glaven RH, Coppi MV et al (2011) Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 80:142–150PubMed Strycharz SM, Glaven RH, Coppi MV et al (2011) Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 80:142–150PubMed
29.
go back to reference Lovley DR (2011) Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy. Rev Environ Sci Biotechnol 10:101–105 Lovley DR (2011) Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy. Rev Environ Sci Biotechnol 10:101–105
30.
go back to reference Rotaru AE, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP, Lovley DR (2014) Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol 80:4599–4605PubMedPubMedCentral Rotaru AE, Shrestha PM, Liu F, Markovaite B, Chen S, Nevin KP, Lovley DR (2014) Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl Environ Microbiol 80:4599–4605PubMedPubMedCentral
31.
go back to reference Rotaru AE, Shrestha PM, Liu FH et al (2014) A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energ Environ Sci 7:408–415 Rotaru AE, Shrestha PM, Liu FH et al (2014) A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energ Environ Sci 7:408–415
32.
go back to reference Rotaru AE, Shrestha PM, Liu FH, Ueki T, Nevin K, Summers ZM, Lovley DR (2012) Interspecies electron transfer via hydrogen and Formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens. Appl Environ Microbiol 78:7645–7651PubMedPubMedCentral Rotaru AE, Shrestha PM, Liu FH, Ueki T, Nevin K, Summers ZM, Lovley DR (2012) Interspecies electron transfer via hydrogen and Formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens. Appl Environ Microbiol 78:7645–7651PubMedPubMedCentral
33.
go back to reference Rollefson JB, Stephen CS, Tien M, Bond DR (2011) Identification of an extracellular polysaccharide network essential for cytochrome anchoring and biofilm formation in Geobacter sulfurreducens. J Bacteriol 193:1023–1033PubMed Rollefson JB, Stephen CS, Tien M, Bond DR (2011) Identification of an extracellular polysaccharide network essential for cytochrome anchoring and biofilm formation in Geobacter sulfurreducens. J Bacteriol 193:1023–1033PubMed
34.
go back to reference Malvankar NS, Vargas M, Nevin KP et al (2011) Tunable metallic-like conductivity in microbial nanowire networks. Nat Nanotechnol 6:573–579PubMed Malvankar NS, Vargas M, Nevin KP et al (2011) Tunable metallic-like conductivity in microbial nanowire networks. Nat Nanotechnol 6:573–579PubMed
35.
go back to reference Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101PubMed Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101PubMed
36.
go back to reference Yates MD, Strycharz-Glaven SM, Golden JP, Roy J, Tsoi S, Erickson JS, El-Naggar MY, Barton SC, Tender LM (2016) Measuring conductivity of living Geobacter sulfurreducens biofilms. Nat Nanotechnol 11:910–913PubMed Yates MD, Strycharz-Glaven SM, Golden JP, Roy J, Tsoi S, Erickson JS, El-Naggar MY, Barton SC, Tender LM (2016) Measuring conductivity of living Geobacter sulfurreducens biofilms. Nat Nanotechnol 11:910–913PubMed
37.
go back to reference Malvankar NS, Rotello VM, Tuominen MT, Lovley DR (2016) Reply to ‘Measuring conductivity of living Geobacter sulfurreducens biofilms’. Nat Nanotechnol 11:913–914PubMed Malvankar NS, Rotello VM, Tuominen MT, Lovley DR (2016) Reply to ‘Measuring conductivity of living Geobacter sulfurreducens biofilms’. Nat Nanotechnol 11:913–914PubMed
38.
go back to reference Childers SE, Ciufo S, Lovley DR (2002) Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416:767–769PubMed Childers SE, Ciufo S, Lovley DR (2002) Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416:767–769PubMed
39.
go back to reference Lovley DR (2012) Long-range electron transport to Fe(III) oxide via pili with metallic-like conductivity. Biochem Soc Trans 40:1186–1190PubMed Lovley DR (2012) Long-range electron transport to Fe(III) oxide via pili with metallic-like conductivity. Biochem Soc Trans 40:1186–1190PubMed
40.
go back to reference Malvankar NS, Tuominen MT, Lovley DR (2012) Lack of cytochrome involvement in long-range electron transport through conductive biofilms and nanowires of Geobacter sulfurreducens. Energ Environ Sci 5:8651–8659 Malvankar NS, Tuominen MT, Lovley DR (2012) Lack of cytochrome involvement in long-range electron transport through conductive biofilms and nanowires of Geobacter sulfurreducens. Energ Environ Sci 5:8651–8659
41.
go back to reference Tremblay PL, Aklujkar M, Leang C, Nevin KP, Lovley D (2012) A genetic system for Geobacter metallireducens: role of the flagellin and pilin in the reduction of Fe(III) oxide. Environ Microbiol Rep 4:82–88PubMed Tremblay PL, Aklujkar M, Leang C, Nevin KP, Lovley D (2012) A genetic system for Geobacter metallireducens: role of the flagellin and pilin in the reduction of Fe(III) oxide. Environ Microbiol Rep 4:82–88PubMed
42.
go back to reference Shrestha PM, Rotaru AE, Aklujkar M et al (2013) Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange. Environ Microbiol Rep 5:904–910PubMed Shrestha PM, Rotaru AE, Aklujkar M et al (2013) Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange. Environ Microbiol Rep 5:904–910PubMed
43.
go back to reference Vargas M, Malvankar NS, Tremblay PL et al (2013) Aromatic amino acids required for Pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 4(2):e00105–e00113PubMedPubMedCentral Vargas M, Malvankar NS, Tremblay PL et al (2013) Aromatic amino acids required for Pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 4(2):e00105–e00113PubMedPubMedCentral
44.
go back to reference Tan Y, Adhikari RY, Malvankar NS et al (2016) Synthetic biological protein nanowires with high conductivity. Small 12:4481–4485PubMed Tan Y, Adhikari RY, Malvankar NS et al (2016) Synthetic biological protein nanowires with high conductivity. Small 12:4481–4485PubMed
45.
go back to reference Yi HN, Nevin KP, Kim BC, Franks AE, Klimes A, Tender LM, Lovley DR (2009) Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens Bioelectron 24:3498–3503PubMed Yi HN, Nevin KP, Kim BC, Franks AE, Klimes A, Tender LM, Lovley DR (2009) Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens Bioelectron 24:3498–3503PubMed
46.
go back to reference Burns JL, DiChristina TJ (2009) Anaerobic respiration of elemental sulfur and thiosulfate by Shewanella oneidensis MR-1 requires psrA, a homolog of the phsA gene of Salmonella enterica serovar Typhimurium LT2. Appl Environ Microbiol 75:5209–5217PubMedPubMedCentral Burns JL, DiChristina TJ (2009) Anaerobic respiration of elemental sulfur and thiosulfate by Shewanella oneidensis MR-1 requires psrA, a homolog of the phsA gene of Salmonella enterica serovar Typhimurium LT2. Appl Environ Microbiol 75:5209–5217PubMedPubMedCentral
47.
go back to reference Gralnick JA, Vali H, Lies DP, Newman DK (2006) Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proc Natl Acad Sci U S A 103:4669–4674PubMedPubMedCentral Gralnick JA, Vali H, Lies DP, Newman DK (2006) Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. Proc Natl Acad Sci U S A 103:4669–4674PubMedPubMedCentral
48.
go back to reference Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron-acceptor. Science 240:1319–1321PubMed Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron-acceptor. Science 240:1319–1321PubMed
49.
go back to reference Sturm G, Richter K, Doetsch A, Heide H, Louro RO, Gescher J (2015) A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime. ISME J 9:1802–1811PubMedPubMedCentral Sturm G, Richter K, Doetsch A, Heide H, Louro RO, Gescher J (2015) A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime. ISME J 9:1802–1811PubMedPubMedCentral
50.
go back to reference Myers CR, Myers JM (1997) Cloning and sequence of cymA a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J Bacteriol 179:1143–1152PubMedPubMedCentral Myers CR, Myers JM (1997) Cloning and sequence of cymA a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens MR-1. J Bacteriol 179:1143–1152PubMedPubMedCentral
51.
go back to reference Beliaev AS, Klingeman DM, Klappenbach JA et al (2005) Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J Bacteriol 187:7138–7145PubMedPubMedCentral Beliaev AS, Klingeman DM, Klappenbach JA et al (2005) Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J Bacteriol 187:7138–7145PubMedPubMedCentral
52.
go back to reference Schuetz B, Schicklberger M, Kuermann J, Spormann AM, Gescher J (2009) Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1. Appl Environ Microbiol 75:7789–7796PubMedPubMedCentral Schuetz B, Schicklberger M, Kuermann J, Spormann AM, Gescher J (2009) Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1. Appl Environ Microbiol 75:7789–7796PubMedPubMedCentral
53.
go back to reference McMillan DGG, Marritt SJ, Firer-Sherwood MA et al (2013) Protein-protein interaction regulates the direction of catalysis and electron transfer in a redox enzyme complex. J Am Chem Soc 135:10550–10556PubMedPubMedCentral McMillan DGG, Marritt SJ, Firer-Sherwood MA et al (2013) Protein-protein interaction regulates the direction of catalysis and electron transfer in a redox enzyme complex. J Am Chem Soc 135:10550–10556PubMedPubMedCentral
55.
go back to reference Coursolle D, Baron DB, Bond DR, Gralnick JA (2010) The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 192:467–474PubMed Coursolle D, Baron DB, Bond DR, Gralnick JA (2010) The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. J Bacteriol 192:467–474PubMed
56.
go back to reference Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105:3968–3973PubMedPubMedCentral Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci U S A 105:3968–3973PubMedPubMedCentral
57.
go back to reference von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623 von Canstein H, Ogawa J, Shimizu S, Lloyd JR (2008) Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl Environ Microbiol 74:615–623
58.
go back to reference Brutinel ED, Gralnick JA (2012) Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl Microbiol Biotechnol 93:41–48PubMed Brutinel ED, Gralnick JA (2012) Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl Microbiol Biotechnol 93:41–48PubMed
59.
go back to reference Baron D, LaBelle E, Coursolle D, Gralnick JA, Bond DR (2009) Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J Biol Chem 284:28865–28873PubMedPubMedCentral Baron D, LaBelle E, Coursolle D, Gralnick JA, Bond DR (2009) Electrochemical measurement of electron transfer kinetics by Shewanella oneidensis MR-1. J Biol Chem 284:28865–28873PubMedPubMedCentral
60.
go back to reference Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR (2011) Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS One 6(2):e16649PubMedPubMedCentral Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR (2011) Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS One 6(2):e16649PubMedPubMedCentral
61.
go back to reference Breuer M, Rosso KM, Blumberger J, Butt JN (2015) Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities. J R Soc Interface 12:20141117PubMedPubMedCentral Breuer M, Rosso KM, Blumberger J, Butt JN (2015) Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities. J R Soc Interface 12:20141117PubMedPubMedCentral
62.
go back to reference Clarke TA, Edwards MJ, Gates AJ et al (2011) Structure of a bacterial cell surface decaheme electron conduit. Proc Natl Acad Sci U S A 108:9384–9389PubMedPubMedCentral Clarke TA, Edwards MJ, Gates AJ et al (2011) Structure of a bacterial cell surface decaheme electron conduit. Proc Natl Acad Sci U S A 108:9384–9389PubMedPubMedCentral
63.
go back to reference Edwards MJ, White GF, Norman M et al (2015) Redox linked Flavin sites in extracellular Decaheme proteins involved in microbe-mineral electron transfer. Sci Rep 5:11677PubMedPubMedCentral Edwards MJ, White GF, Norman M et al (2015) Redox linked Flavin sites in extracellular Decaheme proteins involved in microbe-mineral electron transfer. Sci Rep 5:11677PubMedPubMedCentral
64.
go back to reference Okamoto A, Hashimoto K, Nealson KH, Nakamura R (2013) Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proc Natl Acad Sci U S A 110:7856–7861PubMedPubMedCentral Okamoto A, Hashimoto K, Nealson KH, Nakamura R (2013) Rate enhancement of bacterial extracellular electron transport involves bound flavin semiquinones. Proc Natl Acad Sci U S A 110:7856–7861PubMedPubMedCentral
65.
go back to reference Okamoto A, Nakamura R, Nealson KH, Hashimoto K (2014) Bound Flavin model suggests similar electron-transfer mechanisms in Shewanella and Geobacter. ChemElectroChem 1:1808–1812 Okamoto A, Nakamura R, Nealson KH, Hashimoto K (2014) Bound Flavin model suggests similar electron-transfer mechanisms in Shewanella and Geobacter. ChemElectroChem 1:1808–1812
66.
go back to reference Okamoto A, Kalathil S, Deng X, Hashimoto K, Nakamura R, Nealson KH (2014) Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH. Sci Rep 4 Okamoto A, Kalathil S, Deng X, Hashimoto K, Nakamura R, Nealson KH (2014) Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH. Sci Rep 4
67.
go back to reference Ding M, Shiu HY, Li SL et al (2016) Nanoelectronic investigation reveals the electrochemical basis of electrical conductivity in Shewanella and Geobacter. ACS Nano 10:9919–9926PubMed Ding M, Shiu HY, Li SL et al (2016) Nanoelectronic investigation reveals the electrochemical basis of electrical conductivity in Shewanella and Geobacter. ACS Nano 10:9919–9926PubMed
68.
go back to reference Koch C, Harnisch F (2016) Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem 3:1282–1295 Koch C, Harnisch F (2016) Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem 3:1282–1295
69.
go back to reference Carlson HK, Iavarone AT, Gorur A et al (2012) Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram- positive bacteria. Proc Natl Acad Sci U S A 109:1702–1707PubMedPubMedCentral Carlson HK, Iavarone AT, Gorur A et al (2012) Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram- positive bacteria. Proc Natl Acad Sci U S A 109:1702–1707PubMedPubMedCentral
70.
go back to reference Wrighton KC, Thrash JC, Melnyk RA et al (2011) Evidence for direct electron transfer by a Gram-positive bacterium isolated from a microbial fuel cell. Appl Environ Microbiol 77:7633–7639PubMedPubMedCentral Wrighton KC, Thrash JC, Melnyk RA et al (2011) Evidence for direct electron transfer by a Gram-positive bacterium isolated from a microbial fuel cell. Appl Environ Microbiol 77:7633–7639PubMedPubMedCentral
71.
go back to reference Lusk BG, Parameswaran P, Popat SC, Rittmann BE, Torres CI (2016) The effect of pH and buffer concentration on anode biofilms of Thermincola ferriacetica. Bioelectrochemistry 112:47–52PubMed Lusk BG, Parameswaran P, Popat SC, Rittmann BE, Torres CI (2016) The effect of pH and buffer concentration on anode biofilms of Thermincola ferriacetica. Bioelectrochemistry 112:47–52PubMed
72.
go back to reference Clark Jr LC, Lyons C (1962) Electrode systems for continuous monitoring un cardiovascular surgery. Ann N Y Acad Sci 102:29–45PubMed Clark Jr LC, Lyons C (1962) Electrode systems for continuous monitoring un cardiovascular surgery. Ann N Y Acad Sci 102:29–45PubMed
73.
go back to reference Setford SJ, Newman JD (2005) Enzyme biosensors. vol 17, pp 29–60 Setford SJ, Newman JD (2005) Enzyme biosensors. vol 17, pp 29–60
74.
go back to reference Turner AP, Karube I, Wilson GS (1987) Biosensors fundamentals and applications. Oxford Science Publications, Oxford, Engalnd Turner AP, Karube I, Wilson GS (1987) Biosensors fundamentals and applications. Oxford Science Publications, Oxford, Engalnd
75.
go back to reference Lazcka O, Del Campo FJ, Munoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22:1205–1217PubMed Lazcka O, Del Campo FJ, Munoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22:1205–1217PubMed
76.
go back to reference Luong JH, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26:492–500PubMed Luong JH, Male KB, Glennon JD (2008) Biosensor technology: technology push versus market pull. Biotechnol Adv 26:492–500PubMed
77.
go back to reference Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788–1799PubMed Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788–1799PubMed
78.
go back to reference Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212PubMed Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212PubMed
79.
go back to reference Kumlanghan A, Kanatharana P, Asawatreratanakul P, Mattiasson B, Thavarungkul P (2008) Microbial BOD sensor for monitoring treatment of wastewater from a rubber latex industry. Enzyme Microb Technol 42:483–491 Kumlanghan A, Kanatharana P, Asawatreratanakul P, Mattiasson B, Thavarungkul P (2008) Microbial BOD sensor for monitoring treatment of wastewater from a rubber latex industry. Enzyme Microb Technol 42:483–491
80.
go back to reference Nakamura H, Suzuki K, Ishikuro H et al (2007) A new BOD estimation method employing a double-mediator system by ferricyanide and menadione using the eukaryote Saccharomyces cerevisiae. Talanta 72:210–216PubMed Nakamura H, Suzuki K, Ishikuro H et al (2007) A new BOD estimation method employing a double-mediator system by ferricyanide and menadione using the eukaryote Saccharomyces cerevisiae. Talanta 72:210–216PubMed
81.
go back to reference APHA (1998) Standard methods for the examination of waters and wastewaters, vol 20. American Public Health Association, Washington APHA (1998) Standard methods for the examination of waters and wastewaters, vol 20. American Public Health Association, Washington
82.
go back to reference SIS (1979) Water analysis - determination of biochemical oxygen demand, BOD, of water dilution method (Svensk standard SS 02 81 43 E), vol 1. The Swedish Standards Institution, Stockholm SIS (1979) Water analysis - determination of biochemical oxygen demand, BOD, of water dilution method (Svensk standard SS 02 81 43 E), vol 1. The Swedish Standards Institution, Stockholm
83.
go back to reference Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW, Kim BH (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19:607–613PubMed Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW, Kim BH (2004) Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19:607–613PubMed
84.
go back to reference Kim BH, Chang IS, Gil GC, Park HS, Kim HJ (2003) Novel BOD (biochemical oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25:541–545PubMed Kim BH, Chang IS, Gil GC, Park HS, Kim HJ (2003) Novel BOD (biochemical oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25:541–545PubMed
85.
go back to reference Clark Jr LC (1956) Monitor and control of blood and tissue oxygen tensions. Trans Am Soc Artif Intern Organs 2(1):41–48 Clark Jr LC (1956) Monitor and control of blood and tissue oxygen tensions. Trans Am Soc Artif Intern Organs 2(1):41–48
86.
go back to reference Karube I, Matsunaga T, Mitsuda S, Suzuki S (1977) Microbial electrode BOD sensors. Biotechnol Bioeng XIX:1535–1547 Karube I, Matsunaga T, Mitsuda S, Suzuki S (1977) Microbial electrode BOD sensors. Biotechnol Bioeng XIX:1535–1547
87.
go back to reference Liu J, Mattiasson B (2002) Microbial BOD sensors for wastewater analysis. Water Res 36:3786–3802PubMed Liu J, Mattiasson B (2002) Microbial BOD sensors for wastewater analysis. Water Res 36:3786–3802PubMed
88.
go back to reference Ponomareva ON, Arlyapov VA, Alferov VA, Reshetilov AN (2011) Microbial biosensors for detection of biological oxygen demand (a review). Appl Biochem Microbiol 47:1–11 Ponomareva ON, Arlyapov VA, Alferov VA, Reshetilov AN (2011) Microbial biosensors for detection of biological oxygen demand (a review). Appl Biochem Microbiol 47:1–11
89.
go back to reference Liu J, Bjornsson L, Mattiasson B (2000) Immobilised activated sludge based biosensor for biochemical oxygen demand measurement. Biosens Bioelectron 14(12):883–893PubMed Liu J, Bjornsson L, Mattiasson B (2000) Immobilised activated sludge based biosensor for biochemical oxygen demand measurement. Biosens Bioelectron 14(12):883–893PubMed
90.
go back to reference Chee G, Nomura Y, Karube I (1999) Biosensor for the estimation of low biochemical oxygen demand. Anal Chim Acta 379:185–191 Chee G, Nomura Y, Karube I (1999) Biosensor for the estimation of low biochemical oxygen demand. Anal Chim Acta 379:185–191
91.
go back to reference Kulys J, Kadziauskiene K (1980) Yeast BOD sensor. Biotechnol Bioeng XXII:221–226 Kulys J, Kadziauskiene K (1980) Yeast BOD sensor. Biotechnol Bioeng XXII:221–226
92.
go back to reference Marty JL, Olive D, Asano Y (1997) Measurement of BOD: correlation between 5-day BOD and commercial BOD biosensor values. Environ Technol 18:333–337 Marty JL, Olive D, Asano Y (1997) Measurement of BOD: correlation between 5-day BOD and commercial BOD biosensor values. Environ Technol 18:333–337
93.
go back to reference Riedel K, Renneberg R, Kühn M, Scheller F (1988) A fast estimation of biochemical oxygen demandusing microbial sensors. Appl Microbiol Biotechnol 28:316–318 Riedel K, Renneberg R, Kühn M, Scheller F (1988) A fast estimation of biochemical oxygen demandusing microbial sensors. Appl Microbiol Biotechnol 28:316–318
94.
go back to reference Kang KH, Jang JK, Pham TH, Moon H, Chang IS, Kim BH (2003) A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol Lett 25:1357–1361PubMed Kang KH, Jang JK, Pham TH, Moon H, Chang IS, Kim BH (2003) A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol Lett 25:1357–1361PubMed
95.
go back to reference Grzebyk M, Poźniak G (2005) Microbial fuel cells (MFCs) with interpolymer cation exchange membranes. Sep Purif Technol 41:321–328 Grzebyk M, Poźniak G (2005) Microbial fuel cells (MFCs) with interpolymer cation exchange membranes. Sep Purif Technol 41:321–328
96.
go back to reference Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298PubMed Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298PubMed
97.
go back to reference Tkac J, Vostiar I, Gorton L, Gemeiner P, Sturdik E (2003) Improved selectivity of microbial biosensor using membrane coating. Application to the analysis of ethanol during fermentation. Biosens Bioelectron 18:1125–1134PubMed Tkac J, Vostiar I, Gorton L, Gemeiner P, Sturdik E (2003) Improved selectivity of microbial biosensor using membrane coating. Application to the analysis of ethanol during fermentation. Biosens Bioelectron 18:1125–1134PubMed
98.
go back to reference Trosok SP, Driscoll BT, Luong JHT (2001) Mediated microbial biosensor using a novel yeast strain for wastewater BOD measurement. Appl Microbiol Biotechnol 56:550–554PubMed Trosok SP, Driscoll BT, Luong JHT (2001) Mediated microbial biosensor using a novel yeast strain for wastewater BOD measurement. Appl Microbiol Biotechnol 56:550–554PubMed
99.
go back to reference Yoshida N, Hoashi J, Morita T, McNiven S, Nakamura H, Karube I (2001) Improvement of a mediator-type biochemical oxygen demand sensor for on-site measurement. J Biotechnol 88:269–275PubMed Yoshida N, Hoashi J, Morita T, McNiven S, Nakamura H, Karube I (2001) Improvement of a mediator-type biochemical oxygen demand sensor for on-site measurement. J Biotechnol 88:269–275PubMed
100.
go back to reference Pasco NF, Baronian K, Jeffries C, Hay J (2000) Biochemical mediator demand - a novel rapid alternative for measuring biochemical oxygen demand. Appl Microbiol Biotechnol 53:613–618PubMed Pasco NF, Baronian K, Jeffries C, Hay J (2000) Biochemical mediator demand - a novel rapid alternative for measuring biochemical oxygen demand. Appl Microbiol Biotechnol 53:613–618PubMed
101.
go back to reference Morris K, Zhao H, John R (2003) The use of a mixed microbial consortium in a rapid ferricyanide mediated biochemical oxygen demand assay. Trans Ecol Environ:65 Morris K, Zhao H, John R (2003) The use of a mixed microbial consortium in a rapid ferricyanide mediated biochemical oxygen demand assay. Trans Ecol Environ:65
102.
go back to reference Gil G-C, Chang I-S, Kim BH, Kim M, Jang J-K, Park HS, Kim HJ (2003) Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334PubMed Gil G-C, Chang I-S, Kim BH, Kim M, Jang J-K, Park HS, Kim HJ (2003) Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334PubMed
103.
go back to reference Pasco NF, Weld RJ, Hay JM, Gooneratne R (2011) Development and applications of whole cell biosensors for ecotoxicity testing. Anal Bioanal Chem 400:931–945PubMed Pasco NF, Weld RJ, Hay JM, Gooneratne R (2011) Development and applications of whole cell biosensors for ecotoxicity testing. Anal Bioanal Chem 400:931–945PubMed
104.
go back to reference Kumlanghan A, Liu J, Thavarungkul P, Kanatharana P, Mattiasson B (2007) Microbial fuel cell-based biosensor for fast analysis of biodegradable organic matter. Biosens Bioelectron 22:2939–2944PubMed Kumlanghan A, Liu J, Thavarungkul P, Kanatharana P, Mattiasson B (2007) Microbial fuel cell-based biosensor for fast analysis of biodegradable organic matter. Biosens Bioelectron 22:2939–2944PubMed
105.
go back to reference Di Lorenzo M, Curtis TP, Head IM, Scott K (2009) A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res 43:3145–3154PubMed Di Lorenzo M, Curtis TP, Head IM, Scott K (2009) A single-chamber microbial fuel cell as a biosensor for wastewaters. Water Res 43:3145–3154PubMed
106.
go back to reference Di Lorenzo M, Thomson AR, Schneider K, Cameron PJ, Ieropoulos I (2014) A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosens Bioelectron 62:182–188PubMed Di Lorenzo M, Thomson AR, Schneider K, Cameron PJ, Ieropoulos I (2014) A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality. Biosens Bioelectron 62:182–188PubMed
107.
go back to reference Kim M, Sik Hyun M, Gadd GM, Joo Kim H (2007) A novel biomonitoring system using microbial fuel cells. J Environ Monit 9:1323–1328PubMed Kim M, Sik Hyun M, Gadd GM, Joo Kim H (2007) A novel biomonitoring system using microbial fuel cells. J Environ Monit 9:1323–1328PubMed
108.
go back to reference Stein NE, Hamelers HMV, van Straten G, Keesman KJ (2012) On-line detection of toxic components using a microbial fuel cell-based biosensor. J Process Control 22:1755–1761 Stein NE, Hamelers HMV, van Straten G, Keesman KJ (2012) On-line detection of toxic components using a microbial fuel cell-based biosensor. J Process Control 22:1755–1761
109.
go back to reference Wang B, Barahona M, Buck M (2013) A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosens Bioelectron 40:368–376PubMedPubMedCentral Wang B, Barahona M, Buck M (2013) A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosens Bioelectron 40:368–376PubMedPubMedCentral
110.
go back to reference Hernandez Leal L, Soeter AM, Kools SA et al (2012) Ecotoxicological assessment of grey water treatment systems with Daphnia magna and Chironomus riparius. Water Res 46:1038–1044PubMed Hernandez Leal L, Soeter AM, Kools SA et al (2012) Ecotoxicological assessment of grey water treatment systems with Daphnia magna and Chironomus riparius. Water Res 46:1038–1044PubMed
111.
go back to reference Matsunaga T, Takeyama H, Nakao T, Yamazawa A (1999) Screening of marine microalgae for bioremediation of cadmium- polluted seawater. J Biotechnol 70:33–38PubMed Matsunaga T, Takeyama H, Nakao T, Yamazawa A (1999) Screening of marine microalgae for bioremediation of cadmium- polluted seawater. J Biotechnol 70:33–38PubMed
112.
go back to reference Qu R, Wang X, Liu Z, Yan Z, Wang Z (2013) Development of a model to predict the effect of water chemistry on the acute toxicity of cadmium to Photobacterium phosphoreum. J Hazard Mater 262:288–296PubMed Qu R, Wang X, Liu Z, Yan Z, Wang Z (2013) Development of a model to predict the effect of water chemistry on the acute toxicity of cadmium to Photobacterium phosphoreum. J Hazard Mater 262:288–296PubMed
113.
go back to reference Zhang H, Cao H, Meng Y, Jin G, Zhu M (2012) The toxicity of cadmium (Cd(2)(+)) towards embryos and pro-larva of soldatov’s catfish (Silurus Soldatovi). Ecotoxicol Environ Saf 80:258–265PubMed Zhang H, Cao H, Meng Y, Jin G, Zhu M (2012) The toxicity of cadmium (Cd(2)(+)) towards embryos and pro-larva of soldatov’s catfish (Silurus Soldatovi). Ecotoxicol Environ Saf 80:258–265PubMed
114.
go back to reference Lee H, Yang W, Wei X, Fraiwan A, Choi S (2015) A microsized microbial fuel cell based biosensor for fast and sensitive detection of toxic substances in water Lee H, Yang W, Wei X, Fraiwan A, Choi S (2015) A microsized microbial fuel cell based biosensor for fast and sensitive detection of toxic substances in water
115.
go back to reference Patil S, Harnisch F, Schroder U (2010) Toxicity response of electroactive microbial biofilms - a decisive feature for potential biosensor and power source applications. ChemPhysChem 11:2834–2837PubMed Patil S, Harnisch F, Schroder U (2010) Toxicity response of electroactive microbial biofilms - a decisive feature for potential biosensor and power source applications. ChemPhysChem 11:2834–2837PubMed
116.
go back to reference Davila D, Esquivel JP, Sabate N, Mas J (2011) Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosens Bioelectron 26:2426–2430PubMed Davila D, Esquivel JP, Sabate N, Mas J (2011) Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosens Bioelectron 26:2426–2430PubMed
117.
go back to reference Tront JM, Fortner JD, Plotze M, Hughes JB, Puzrin AM (2008) Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosens Bioelectron 24:586–590PubMed Tront JM, Fortner JD, Plotze M, Hughes JB, Puzrin AM (2008) Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosens Bioelectron 24:586–590PubMed
118.
go back to reference Tront JM, Fortner JD, Plotze M, Hughes JB, Puzrin AM (2008) Microbial fuel cell technology for measurement of microbial respiration of lactate as an example of bioremediation amendment. Biotechnol Lett 30:1385–1390PubMed Tront JM, Fortner JD, Plotze M, Hughes JB, Puzrin AM (2008) Microbial fuel cell technology for measurement of microbial respiration of lactate as an example of bioremediation amendment. Biotechnol Lett 30:1385–1390PubMed
119.
go back to reference Holtmann D, Sell D (2002) Detection of the microbial activity of aerobic heterotrophic, anoxic heterotrophic and aerobic autotrophic activated sludge organisms with an electrochemical sensor. Biotechnol Lett 24:1313–1318 Holtmann D, Sell D (2002) Detection of the microbial activity of aerobic heterotrophic, anoxic heterotrophic and aerobic autotrophic activated sludge organisms with an electrochemical sensor. Biotechnol Lett 24:1313–1318
120.
go back to reference Holtmann D, Schrader J, Sell D (2006) Quantitative comparison of the signals of an electrochemical bioactivity sensor during the cultivation of different microorganisms. Biotechnol Lett 28:889–896PubMed Holtmann D, Schrader J, Sell D (2006) Quantitative comparison of the signals of an electrochemical bioactivity sensor during the cultivation of different microorganisms. Biotechnol Lett 28:889–896PubMed
121.
go back to reference Golitsch F, Bücking C, Gescher J (2013) Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes. Biosens Bioelectron 47:285–291PubMed Golitsch F, Bücking C, Gescher J (2013) Proof of principle for an engineered microbial biosensor based on Shewanella oneidensis outer membrane protein complexes. Biosens Bioelectron 47:285–291PubMed
122.
go back to reference Bücking C, Popp F, Kerzenmacher S, Gescher J (2010) Involvement and specificity of Shewanella oneidensis outer membrane cytochromes in the reduction of soluble and solid-phase terminal electron acceptors. FEMS Microbiol Lett 306:144–151PubMed Bücking C, Popp F, Kerzenmacher S, Gescher J (2010) Involvement and specificity of Shewanella oneidensis outer membrane cytochromes in the reduction of soluble and solid-phase terminal electron acceptors. FEMS Microbiol Lett 306:144–151PubMed
123.
go back to reference Webster DP, TerAvest MA, Doud DF et al (2014) An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system. Biosens Bioelectron 62:320–324PubMed Webster DP, TerAvest MA, Doud DF et al (2014) An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system. Biosens Bioelectron 62:320–324PubMed
Metadata
Title
Extracellular Electron Transfer and Biosensors
Authors
Francesca Simonte
Gunnar Sturm
Johannes Gescher
Katrin Sturm-Richter
Copyright Year
2019
DOI
https://doi.org/10.1007/10_2017_34

Premium Partners