Skip to main content
Top
Published in: Rare Metals 11/2023

06-05-2019

Electrochemical properties of high-loading sulfur–carbon materials prepared by in situ generation method

Authors: Can Jiao, Chun-Rong Zhao, Li Zhang, Shang-Qian Zhao, Guo-Yao Pang, Hao-Bo Sun, Shi-Gang Lu

Published in: Rare Metals | Issue 11/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A high sulfur content sulfur–carbon composite was synthesized via in situ generation method in aqueous solution. When the sulfur loading is up to 90%, the electrode still exhibits good cycling performance with a reversible capacity of about 623 mAh·g−1 after 100 cycles. To further commercialize the Li–S battery, understanding the capacity degradation mechanism is very essential, especially with a high sulfur loading electrode. To achieve this goal, the electrochemical performance of the high sulfur loading electrode was studied, and the structure change of the electrode after cycling was also examined by ex situ scanning electron microscopy (SEM) and other techniques. The result shows that the Li2S2 and Li2S inhomogeneous precipitation contributes to the majority capacity fading of the high sulfur loading Li–S cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Manthiram A, Fu Y, Su YS. Challenges and prospects of lithium–sulfur batteries. Acc Chem Res. 2012;46(5):1125.CrossRef Manthiram A, Fu Y, Su YS. Challenges and prospects of lithium–sulfur batteries. Acc Chem Res. 2012;46(5):1125.CrossRef
[2]
go back to reference Li Z, Huang YM, Yuan LX, Hao ZX, Huang YH. Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon. 2015;92:41.CrossRef Li Z, Huang YM, Yuan LX, Hao ZX, Huang YH. Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon. 2015;92:41.CrossRef
[3]
go back to reference Ma W, Xu Q. Lithium cobaltate: a novel host material enables high-rate and stable lithium–sulfur batteries. Rare Met. 2018;36(11):929.CrossRef Ma W, Xu Q. Lithium cobaltate: a novel host material enables high-rate and stable lithium–sulfur batteries. Rare Met. 2018;36(11):929.CrossRef
[4]
go back to reference Huang Q, Gao ZS, Yang R, Fang YY, Shi JM. Survey and research process on electrode materials of lithium–sulfur batteries. Chin J Rare Met. 2018;42(7):772. Huang Q, Gao ZS, Yang R, Fang YY, Shi JM. Survey and research process on electrode materials of lithium–sulfur batteries. Chin J Rare Met. 2018;42(7):772.
[5]
go back to reference Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon sulfur cathode for lithium sulfur batteries. Nat Mater. 2009;8(6):500.CrossRef Ji X, Lee KT, Nazar LF. A highly ordered nanostructured carbon sulfur cathode for lithium sulfur batteries. Nat Mater. 2009;8(6):500.CrossRef
[6]
go back to reference She ZW, Li WY, Cha JJ, Zheng GY, Yang Y, McDowell MT, Hsu PC, Cui Y. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulfur batteries. Nat Commun. 2012;4(4):1331. She ZW, Li WY, Cha JJ, Zheng GY, Yang Y, McDowell MT, Hsu PC, Cui Y. Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulfur batteries. Nat Commun. 2012;4(4):1331.
[7]
go back to reference Hesham AS, Ganguli B, Rao CV, Arava LM. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li–S batteries. J Am Chem Soc. 2015;137(36):11542.CrossRef Hesham AS, Ganguli B, Rao CV, Arava LM. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li–S batteries. J Am Chem Soc. 2015;137(36):11542.CrossRef
[8]
go back to reference Chen JZ, Wu DX, Walter E, Engelhard M, Bhattacharya P, Pan H, Shao Y, Gao F, Xiao J, Liu J. Molecular-confinement of polysulfides within mesoscale electrodes for the practical application of lithium sulfur batteries. Nano Energy. 2015;13:267.CrossRef Chen JZ, Wu DX, Walter E, Engelhard M, Bhattacharya P, Pan H, Shao Y, Gao F, Xiao J, Liu J. Molecular-confinement of polysulfides within mesoscale electrodes for the practical application of lithium sulfur batteries. Nano Energy. 2015;13:267.CrossRef
[9]
go back to reference Chung SH, Manthiram A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium–sulfur batteries. Adv Mater. 2014;26(43):7352.CrossRef Chung SH, Manthiram A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium–sulfur batteries. Adv Mater. 2014;26(43):7352.CrossRef
[10]
go back to reference Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA. Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew Chem Int Ed. 2011;50(26):5904.CrossRef Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA. Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew Chem Int Ed. 2011;50(26):5904.CrossRef
[11]
go back to reference Hua W, Yang Z, Nie H, Li Z, Yang J, Guo Z, Ruan C, Chen X, Huang S. Polysulfide-scission reagents for the suppression of the shuttle effect in lithium–sulfur batteries. ACS Nano. 2017;11(2):2209.CrossRef Hua W, Yang Z, Nie H, Li Z, Yang J, Guo Z, Ruan C, Chen X, Huang S. Polysulfide-scission reagents for the suppression of the shuttle effect in lithium–sulfur batteries. ACS Nano. 2017;11(2):2209.CrossRef
[12]
go back to reference Cañas NA, Wolf S, Wagner N, Friedrich KA. In-situ X-ray diffraction studies of lithium–sulfur batteries. J Power Sources. 2013;226(6):313.CrossRef Cañas NA, Wolf S, Wagner N, Friedrich KA. In-situ X-ray diffraction studies of lithium–sulfur batteries. J Power Sources. 2013;226(6):313.CrossRef
[13]
go back to reference Walus S, Barchasz C, Colin JF, Martin JF, Elkaim E, Lepretre JC, Alloin F. New insight into the working mechanism of lithium–sulfur batteries: in situ and operando X-ray diffraction characterization. Chem Commun. 2013;49(72):7899.CrossRef Walus S, Barchasz C, Colin JF, Martin JF, Elkaim E, Lepretre JC, Alloin F. New insight into the working mechanism of lithium–sulfur batteries: in situ and operando X-ray diffraction characterization. Chem Commun. 2013;49(72):7899.CrossRef
[14]
go back to reference Nelson J, Misra S, Yang Y, Jackson A, Liu Y, Wang H, Dai H, Andrew JC, Cui Y, Toney MF. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J Am Chem Soc. 2012;134(14):6337.CrossRef Nelson J, Misra S, Yang Y, Jackson A, Liu Y, Wang H, Dai H, Andrew JC, Cui Y, Toney MF. In operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J Am Chem Soc. 2012;134(14):6337.CrossRef
[15]
go back to reference Chung SH, Lai KY, Manthiram A. A facile, low-cost hot-pressing process for fabricating lithium–sulfur cells with stable dynamic and static electrochemistry. Adv Mater. 2018;30(46):1805571.CrossRef Chung SH, Lai KY, Manthiram A. A facile, low-cost hot-pressing process for fabricating lithium–sulfur cells with stable dynamic and static electrochemistry. Adv Mater. 2018;30(46):1805571.CrossRef
[16]
go back to reference Lu D, Li Q, Liu J, Zheng J, Wang Y, Ferrara S, Xiao J, Zhang JG, Liu J. Enabling high energy density cathode for lithium–sulfur batteries. ACS Appl Mater Interfaces. 2018;10(27):23094.CrossRef Lu D, Li Q, Liu J, Zheng J, Wang Y, Ferrara S, Xiao J, Zhang JG, Liu J. Enabling high energy density cathode for lithium–sulfur batteries. ACS Appl Mater Interfaces. 2018;10(27):23094.CrossRef
[17]
go back to reference Chung SH, Manthiram A. Designing lithium–sulfur cells with practically necessary parameters. Joule. 2018;2(4):710.CrossRef Chung SH, Manthiram A. Designing lithium–sulfur cells with practically necessary parameters. Joule. 2018;2(4):710.CrossRef
[18]
go back to reference Ji X, Nazar LF. Advances in Li–S batteries. J Mater Chem. 2010;20(44):9821.CrossRef Ji X, Nazar LF. Advances in Li–S batteries. J Mater Chem. 2010;20(44):9821.CrossRef
[19]
go back to reference Zhang B, Qin X, Li GR, Gao XP. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci. 2010;3(10):1531.CrossRef Zhang B, Qin X, Li GR, Gao XP. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci. 2010;3(10):1531.CrossRef
[20]
go back to reference Wang J, Yang J, Wan C, Du K, Xie J, Xu N. Sulfur composite cathode materials for rechargeable lithium batteries. Adv Func Mater. 2003;13(6):487.CrossRef Wang J, Yang J, Wan C, Du K, Xie J, Xu N. Sulfur composite cathode materials for rechargeable lithium batteries. Adv Func Mater. 2003;13(6):487.CrossRef
[21]
go back to reference Wang J, Chew SY, Zhao ZW, Ashraf S, Wexler D, Chen J, Ng SH, Chou SL, Liu HK. Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon. 2008;46(2):229.CrossRef Wang J, Chew SY, Zhao ZW, Ashraf S, Wexler D, Chen J, Ng SH, Chou SL, Liu HK. Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries. Carbon. 2008;46(2):229.CrossRef
[22]
go back to reference Lai C, Gao XP, Zhang B, Yan TY, Zhou Z. Synthesis and electrochemical performance of sulfur/highly porous carbon composites. J Phys Chem C. 2009;113(11):4712.CrossRef Lai C, Gao XP, Zhang B, Yan TY, Zhou Z. Synthesis and electrochemical performance of sulfur/highly porous carbon composites. J Phys Chem C. 2009;113(11):4712.CrossRef
[23]
go back to reference Cheon SE, Ko KK, Kim SW, Chin EY, Kim HT. Rechargeable lithium sulfur battery. Rate capability and cycle characteristic. J Electrochem Soc. 2003;150(6):A800.CrossRef Cheon SE, Ko KK, Kim SW, Chin EY, Kim HT. Rechargeable lithium sulfur battery. Rate capability and cycle characteristic. J Electrochem Soc. 2003;150(6):A800.CrossRef
[24]
go back to reference Lee YM, Choi NS, Park JH, Park JK. Electrochemical performance of lithium/sulfur batteries with protected Li anodes. J Power Sources. 2003;119:964.CrossRef Lee YM, Choi NS, Park JH, Park JK. Electrochemical performance of lithium/sulfur batteries with protected Li anodes. J Power Sources. 2003;119:964.CrossRef
[25]
go back to reference Diao Y, Xie K, Xiong SZ, Hong XB. Shuttle phenomenon—the irreversible oxidation mechanism of sulfur active material in Li–S battery. J Power Sources. 2013;235:181.CrossRef Diao Y, Xie K, Xiong SZ, Hong XB. Shuttle phenomenon—the irreversible oxidation mechanism of sulfur active material in Li–S battery. J Power Sources. 2013;235:181.CrossRef
[26]
go back to reference Peng HJ, Huang JQ, Cheng XB, Zhang Q. Review on high-loading and high-energy lithium–sulfur batteries. Adv Energy Mater. 2017;7(24):1. Peng HJ, Huang JQ, Cheng XB, Zhang Q. Review on high-loading and high-energy lithium–sulfur batteries. Adv Energy Mater. 2017;7(24):1.
[27]
go back to reference Hagen M, Dörfler S, Fanz P, Berger T, Speck R, Tubke J, Althues H, Hoffmann MJ, Scherr C, Kaskel S. Development and costs calculation of lithium–sulfur cells with high sulfur load and binder free electrodes. J Power Sources. 2013;224(4):260.CrossRef Hagen M, Dörfler S, Fanz P, Berger T, Speck R, Tubke J, Althues H, Hoffmann MJ, Scherr C, Kaskel S. Development and costs calculation of lithium–sulfur cells with high sulfur load and binder free electrodes. J Power Sources. 2013;224(4):260.CrossRef
[28]
go back to reference Fan FY, Carter WC, Chiang YM. Mechanism and kinetics of Li2S precipitation in lithium–sulfur batteries. Adv Mater. 2015;27(35):5203.CrossRef Fan FY, Carter WC, Chiang YM. Mechanism and kinetics of Li2S precipitation in lithium–sulfur batteries. Adv Mater. 2015;27(35):5203.CrossRef
[29]
go back to reference Deng Z, Zhang Z, Lai Y, Liu J, Li J, Liu Y. Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading. J Electrochem Soc. 2013;160(4):A553.CrossRef Deng Z, Zhang Z, Lai Y, Liu J, Li J, Liu Y. Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading. J Electrochem Soc. 2013;160(4):A553.CrossRef
[30]
go back to reference Kolosnitsyn VS, Kuzmina EV, Karaseva EV, Mochalov SE. A study of the electrochemical processes in lithium–sulfur cells by impedance spectroscopy. J Power Sources. 2011;196(3):1478.CrossRef Kolosnitsyn VS, Kuzmina EV, Karaseva EV, Mochalov SE. A study of the electrochemical processes in lithium–sulfur cells by impedance spectroscopy. J Power Sources. 2011;196(3):1478.CrossRef
[31]
go back to reference Kolosnitsyn VS, Kuzmina EV, Karaseva EV, Mochalov SE. Impedance spectroscopy studies of changes in the properties of lithium–sulfur cells in the course of cycling. Russ J Electrochem. 2011;47(7):793.CrossRef Kolosnitsyn VS, Kuzmina EV, Karaseva EV, Mochalov SE. Impedance spectroscopy studies of changes in the properties of lithium–sulfur cells in the course of cycling. Russ J Electrochem. 2011;47(7):793.CrossRef
Metadata
Title
Electrochemical properties of high-loading sulfur–carbon materials prepared by in situ generation method
Authors
Can Jiao
Chun-Rong Zhao
Li Zhang
Shang-Qian Zhao
Guo-Yao Pang
Hao-Bo Sun
Shi-Gang Lu
Publication date
06-05-2019
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 11/2023
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01262-x

Other articles of this Issue 11/2023

Rare Metals 11/2023 Go to the issue

Premium Partners