Skip to main content
Top
Published in: Journal of Materials Science 12/2015

01-06-2015 | Original Paper

Electrochemical sensing of ethylenediamine based on cuprous oxide/graphene hybrid structures

Authors: Xinmeng Zhang, Kezhi Li, Hejun Li, Jinhua Lu, Qiangang Fu, Yan Jia, Wei Li

Published in: Journal of Materials Science | Issue 12/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An electrochemical sensor based on in situ synthesized Cu2O microparticles–Cu2O nanowires–graphene (Cu2O MPs–Cu2O NWs–graphene) composite for sensitive detection of ethylenediamine (EDA) is reported. X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, field emission transmission electron microscopy, and energy-dispersive X-ray spectroscopy were utilized to characterize the composition and morphology of the composite. The electrochemical behaviors of EDA at the Cu2O MPs–Cu2O NWs–graphene composite modified electrode were investigated by electrochemical impedance spectroscopy, cyclic voltammetry, and linear sweep voltammetry. The electrochemical sensor exhibited excellent analytical performance for EDA detection with low detection limit of 3.83 × 10−5 M (S/N = 3) and a reproducibility of 1.1 % relative standard deviation. The modified electrode exhibited a rapid response to EDA within 5 s and the amperometric signal showed a good linear correlation to EDA concentration in a broad range from 0.25 to 1.25 mM with a correlation coefficient of R = 0.99699. The superior electrochemical performances of Cu2O MPs–Cu2O NWs–graphene composite are attributed to their peculiar composite structure and the synergistic effects between Cu2O MPs–Cu2O NWs and graphene [Huang et al., Sens Actuators B 178:671–677, 2013; Luo et al., Anal Chim Acta 709:47–53, 2012].

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Novoselo KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselo KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
3.
go back to reference Jin Z, Nackashi D, Lu W, Kittrell C, Tour JM (2010) Decoration, migration, and aggregation of palladium nanoparticles on graphene sheets. Chem Mater 22:5695–5699CrossRef Jin Z, Nackashi D, Lu W, Kittrell C, Tour JM (2010) Decoration, migration, and aggregation of palladium nanoparticles on graphene sheets. Chem Mater 22:5695–5699CrossRef
4.
go back to reference Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef
5.
go back to reference Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef Balandin AA, Ghosh S, Bao WZ, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef
6.
go back to reference Pantelic RS, Meyer JC, Kaiser U, Baumeister W, Plitzko JM (2010) Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. J Struct Biol 170:152–156CrossRef Pantelic RS, Meyer JC, Kaiser U, Baumeister W, Plitzko JM (2010) Graphene oxide: a substrate for optimizing preparations of frozen-hydrated samples. J Struct Biol 170:152–156CrossRef
7.
go back to reference Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
8.
9.
go back to reference Wang SY, Jiang SP, Wang X (2011) Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications. Electrochim Acta 56:3338–3344CrossRef Wang SY, Jiang SP, Wang X (2011) Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications. Electrochim Acta 56:3338–3344CrossRef
10.
go back to reference Lian PC, Zhu XF, Xiang HF, Li Z, Yang WS, Wang HH (2010) Enhanced cycling performance of Fe3O4-graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:834–840CrossRef Lian PC, Zhu XF, Xiang HF, Li Z, Yang WS, Wang HH (2010) Enhanced cycling performance of Fe3O4-graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:834–840CrossRef
11.
go back to reference Ramesha GK, Sampath S (2011) In-situ formation of graphene-lead oxide composite and its use in trace arsenic detection. Sens Actuators B 160:306–311CrossRef Ramesha GK, Sampath S (2011) In-situ formation of graphene-lead oxide composite and its use in trace arsenic detection. Sens Actuators B 160:306–311CrossRef
12.
go back to reference Xu TG, Zhang LW, Cheng HY, Zhu YF (2011) Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl Catal B-Environ 101:382–387CrossRef Xu TG, Zhang LW, Cheng HY, Zhu YF (2011) Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl Catal B-Environ 101:382–387CrossRef
13.
go back to reference Wu JJ, Zhang D, Wang Y, Wan Y, Hou BY (2012) Catalytic activity of graphene-cobalt hydroxide composite for oxygen reduction reaction in alkaline media. J Power Sour 198:122–126CrossRef Wu JJ, Zhang D, Wang Y, Wan Y, Hou BY (2012) Catalytic activity of graphene-cobalt hydroxide composite for oxygen reduction reaction in alkaline media. J Power Sour 198:122–126CrossRef
14.
go back to reference Kottegoda IM, Idris NH, Lu L, Wang JZ, Liu H (2011) Synthesis and characterization of graphene-nickel oxide nanostructures for fast charge- discharge application. Electrochim Acta 56:5815–5822CrossRef Kottegoda IM, Idris NH, Lu L, Wang JZ, Liu H (2011) Synthesis and characterization of graphene-nickel oxide nanostructures for fast charge- discharge application. Electrochim Acta 56:5815–5822CrossRef
15.
go back to reference Liu C, Alwarappan S, Chen ZF (2010) Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens Bioelectron 25:1829–1833CrossRef Liu C, Alwarappan S, Chen ZF (2010) Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens Bioelectron 25:1829–1833CrossRef
16.
go back to reference Huang KJ, Wang L, Li J, Liu YM (2013) Electrochemical sensing based on layered MoS2-graphene composites. Sens Actuators B 178:671–677CrossRef Huang KJ, Wang L, Li J, Liu YM (2013) Electrochemical sensing based on layered MoS2-graphene composites. Sens Actuators B 178:671–677CrossRef
17.
go back to reference Yoon HJ, Jun DH, Yang JH, Zhou Z, Yang SS, Cheng MM (2011) Carbon dioxide gas sensor using a graphene sheet. Sens Actuators B 157:310–313CrossRef Yoon HJ, Jun DH, Yang JH, Zhou Z, Yang SS, Cheng MM (2011) Carbon dioxide gas sensor using a graphene sheet. Sens Actuators B 157:310–313CrossRef
18.
go back to reference Shao YY, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) Graphene based electrochemical sensors and biosensors-A review. Electroanalysis 22:1027–1036CrossRef Shao YY, Wang J, Wu H, Liu J, Aksay IA, Lin YH (2010) Graphene based electrochemical sensors and biosensors-A review. Electroanalysis 22:1027–1036CrossRef
19.
go back to reference Li Y, Liu Y, Fu YJ, Wei TT, Guyader LL, Gao G, Liu RS, Chang YZ, Chen CY (2012) The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33:402–411CrossRef Li Y, Liu Y, Fu YJ, Wei TT, Guyader LL, Gao G, Liu RS, Chang YZ, Chen CY (2012) The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33:402–411CrossRef
20.
go back to reference Mishra AK, Ramaprabhu S (2011) Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination 282:39–45CrossRef Mishra AK, Ramaprabhu S (2011) Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination 282:39–45CrossRef
21.
go back to reference Deng XJ, Lu LL, Li HW (2010) The adsorption properties of Pb(II) and Cd (II) on functionalized graphene prepared by electrolysis method. J Hazard Mater 183:923–930CrossRef Deng XJ, Lu LL, Li HW (2010) The adsorption properties of Pb(II) and Cd (II) on functionalized graphene prepared by electrolysis method. J Hazard Mater 183:923–930CrossRef
22.
go back to reference Wang C, Feng C, Gao YJ (2011) Preparation of a graphene-based magnetic nanocomposite for the removal of anorganic dye from aqueous solution. Chem Eng J 173:92–97CrossRef Wang C, Feng C, Gao YJ (2011) Preparation of a graphene-based magnetic nanocomposite for the removal of anorganic dye from aqueous solution. Chem Eng J 173:92–97CrossRef
23.
go back to reference Fan Y, Huang KJ, Niu DJ, Yang CP, Jing QS (2011) TiO2-graphene nanocomposite for electrochemical sensing of adenine and guanine. Electrochim Acta 56:4685–4690CrossRef Fan Y, Huang KJ, Niu DJ, Yang CP, Jing QS (2011) TiO2-graphene nanocomposite for electrochemical sensing of adenine and guanine. Electrochim Acta 56:4685–4690CrossRef
24.
go back to reference Yuan BQ, Xu CY, Deng DH, Xing Y, Liu L, Pang H, Zhang DJ (2013) Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor. Electrochim Acta 88:708–712CrossRef Yuan BQ, Xu CY, Deng DH, Xing Y, Liu L, Pang H, Zhang DJ (2013) Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor. Electrochim Acta 88:708–712CrossRef
25.
go back to reference Li LM, Du ZF, Liu S, Hao QY, Wang YG, Li QH, Wang TH (2010) A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposites. Talanta 82:1637–1641CrossRef Li LM, Du ZF, Liu S, Hao QY, Wang YG, Li QH, Wang TH (2010) A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposites. Talanta 82:1637–1641CrossRef
26.
go back to reference Kong LJ, Ren ZY, Zheng NN, Du SC, Wu J, Tang JL, Fu HG (2014) Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection. Nano Res 2:469–480 Kong LJ, Ren ZY, Zheng NN, Du SC, Wu J, Tang JL, Fu HG (2014) Interconnected 1D Co3O4 nanowires on reduced graphene oxide for enzymeless H2O2 detection. Nano Res 2:469–480
27.
go back to reference Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339CrossRef
28.
go back to reference Thakur S, Karak N (2012) Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50:5331–5339CrossRef Thakur S, Karak N (2012) Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50:5331–5339CrossRef
29.
go back to reference Xu C, Wang X, Yang LC, Wu YP (2009) Fabrication of a graphene-cuprous oxide composite. J Solid State Chem 182:2486–2490CrossRef Xu C, Wang X, Yang LC, Wu YP (2009) Fabrication of a graphene-cuprous oxide composite. J Solid State Chem 182:2486–2490CrossRef
30.
go back to reference Wang G, Shen X, Wang B, Yao J, Park J (2009) Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47:1359–1364CrossRef Wang G, Shen X, Wang B, Yao J, Park J (2009) Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47:1359–1364CrossRef
31.
go back to reference Zhu YW, Stoller MD, Cai WW, Velamakanni A, Piner RD, Chen D, Ruoff RS (2010) Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4:1227–1233CrossRef Zhu YW, Stoller MD, Cai WW, Velamakanni A, Piner RD, Chen D, Ruoff RS (2010) Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4:1227–1233CrossRef
32.
go back to reference Xu YH, Liang DH, Liu ML, Liu DZ (2008) Preparation and characterization of Cu2O-TiO2: efficient photocatalytic degradation of methylene blue. Mater Res Bull 43:3474–3482CrossRef Xu YH, Liang DH, Liu ML, Liu DZ (2008) Preparation and characterization of Cu2O-TiO2: efficient photocatalytic degradation of methylene blue. Mater Res Bull 43:3474–3482CrossRef
33.
go back to reference Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240CrossRef
34.
go back to reference Du ZF, Yin XM, Zhang M, Hao QY, Wang YG, Wang TH (2010) In situ synthesis of SnO2/graphene nanocomposite and their application as anode material for lithium ion battery. Mater Lett 64:2076–2079CrossRef Du ZF, Yin XM, Zhang M, Hao QY, Wang YG, Wang TH (2010) In situ synthesis of SnO2/graphene nanocomposite and their application as anode material for lithium ion battery. Mater Lett 64:2076–2079CrossRef
35.
go back to reference Hwang GL, Hwang KC, Shieh YT, Lin SJ (2003) Preparation of carbon nanotube encapsulated copper nanowires and their use as a reinforcement for Y-Ba-Cu-O superconductors. Chem Mater 15:1353–1357CrossRef Hwang GL, Hwang KC, Shieh YT, Lin SJ (2003) Preparation of carbon nanotube encapsulated copper nanowires and their use as a reinforcement for Y-Ba-Cu-O superconductors. Chem Mater 15:1353–1357CrossRef
36.
go back to reference Hsiao MC, Liao SH, Yen MY, Liu PI, Pu NW, Wang CA, Ma CM (2010) Preparation of covalently functionalized graphene using residual oxygen-containing functional groups. ACS Appl Mater Interfaces 2:3092–3099CrossRef Hsiao MC, Liao SH, Yen MY, Liu PI, Pu NW, Wang CA, Ma CM (2010) Preparation of covalently functionalized graphene using residual oxygen-containing functional groups. ACS Appl Mater Interfaces 2:3092–3099CrossRef
37.
go back to reference Wang WZ, Varghese OK, Ruan CM, Paulose M, Grimes CA (2003) Synthesis of CuO and Cu2O crystalline nanowires using Cu(OH)2 nanowire templates. J Mater Res 18:2756–2759CrossRef Wang WZ, Varghese OK, Ruan CM, Paulose M, Grimes CA (2003) Synthesis of CuO and Cu2O crystalline nanowires using Cu(OH)2 nanowire templates. J Mater Res 18:2756–2759CrossRef
38.
go back to reference Zhuang ZJ, Su XD, Yuan HY, Sun Q, Xiao D, Choi MF (2008) An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133:126–132CrossRef Zhuang ZJ, Su XD, Yuan HY, Sun Q, Xiao D, Choi MF (2008) An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133:126–132CrossRef
39.
go back to reference Luo J, Jiang SS, Zhang HY, Jiang JQ, Liu XY (2012) A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal Chim Acta 709:47–53CrossRef Luo J, Jiang SS, Zhang HY, Jiang JQ, Liu XY (2012) A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal Chim Acta 709:47–53CrossRef
40.
go back to reference Hu YW, Li FH, Bai XX, Li D, Hua SC, Wang KK, Niu L (2011) Label-free electrochemical impedance sensing of DNA hybridization based on functionalized graphene sheets. Chem Commun 47:1743–1745CrossRef Hu YW, Li FH, Bai XX, Li D, Hua SC, Wang KK, Niu L (2011) Label-free electrochemical impedance sensing of DNA hybridization based on functionalized graphene sheets. Chem Commun 47:1743–1745CrossRef
41.
go back to reference Du Y, Guo SJ, Dong SJ, Wang EK (2011) An integrated sensing system for detection of DNA using new parallel-motif DNA triplex system and graphene-mesoporous silica-gold nanoparticle hybrids. Biomaterials 32:8584–8592CrossRef Du Y, Guo SJ, Dong SJ, Wang EK (2011) An integrated sensing system for detection of DNA using new parallel-motif DNA triplex system and graphene-mesoporous silica-gold nanoparticle hybrids. Biomaterials 32:8584–8592CrossRef
42.
go back to reference Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Eletroanal Chem 101:19–28CrossRef Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Eletroanal Chem 101:19–28CrossRef
Metadata
Title
Electrochemical sensing of ethylenediamine based on cuprous oxide/graphene hybrid structures
Authors
Xinmeng Zhang
Kezhi Li
Hejun Li
Jinhua Lu
Qiangang Fu
Yan Jia
Wei Li
Publication date
01-06-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-8981-5

Other articles of this Issue 12/2015

Journal of Materials Science 12/2015 Go to the issue

Premium Partners