Skip to main content
Top

2016 | OriginalPaper | Chapter

Electrochemically Activated Catalytic Pathways of Human Metabolic Cytochrome P450s in Ultrathin Films

Authors : Sadagopan Krishnan, James F. Rusling

Published in: Electrochemistry of N4 Macrocyclic Metal Complexes

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electrochemical understanding of metalloenzyme biocatalysts can guide in the development of green bioreactors for stereoselective syntheses and tailoring of efficient bio-inspired catalysts for large-scale applications. In addition, if the enzymes themselves can be stabilized into viable catalytic materials such as films or nanoparticles, valuable and unique stereo- and regiospecific reactions can be catalyzed in simple aqueous medium. In particular, biological electrocatalysis is an emerging area that is expected to play a significant role in fine chemical and drug synthesis, niche electronic devices, sustainable energy, and biomedical fields. Our research has specifically been inspired by the broad stereoselective biocatalytic properties of human cytochrome P450 (cyt P450) enzymes. Cyt P450s are a large family of heme iron monooxygenases with high expression in liver and other human organs that serve as the major oxidative catalysts in human metabolism. Electrochemical bioreactors featuring cyt P450s have the potential to complement and accelerate drug development processes by facilitating candidate identification and toxicity evaluation of metabolites. Challenging aspects associated with electrochemical studies of cyt P450s in thin films include enzyme stability, electronic connectivity between cyt P450-heme cofactor and electrodes, density of immobilized electrocatalytically active enzyme molecules, and bioactive cyt P450 conformations in films on electrodes. To achieve these features, various electrode surface environments have been explored. We designed ultrathin bioactive films of cyt P450 enzymes with polyions or insoluble surfactants that demonstrated the first direct electron transfer and biocatalytic applications of this class of enzymes on electrodes. Subsequently, we constructed films of genetically engineered microsomes, rat and human liver microsomes, and cyt P450s assembled with microsomal cyt P450 reductase (CPR) that enabled a bioelectrocatalytic pathway that closely mimicked the in vivo cyt P450 biocatalytic mechanism. These systems allowed us to develop a clearer understanding of cyt P450 electron transfer and enabled uses in microfluidic toxicity screening arrays. In this review, we provide an overview of different catalytic pathways that are accessed and driven electrochemically using pure human cyt P450 enzymes and those present in membrane-bound forms along with CPR.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ortiz de Montellano PR, De Voss JJ (2005) In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York, pp 183–245 Ortiz de Montellano PR, De Voss JJ (2005) In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York, pp 183–245
2.
go back to reference Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE (2004) Drug-drug interactions for UDP-glucuronosyltransferase substrates: a Pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos 32:1201–1208CrossRef Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE (2004) Drug-drug interactions for UDP-glucuronosyltransferase substrates: a Pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos 32:1201–1208CrossRef
3.
go back to reference Guengerich FP (2008) Cytochrome P450 and chemical toxicology. Chem Res Toxicol 21:70–83CrossRef Guengerich FP (2008) Cytochrome P450 and chemical toxicology. Chem Res Toxicol 21:70–83CrossRef
4.
go back to reference Schenkman JB, Greim H (eds) (1993) Cytochrome P450, Springer, Berlin Schenkman JB, Greim H (eds) (1993) Cytochrome P450, Springer, Berlin
5.
go back to reference Jung C (2011) The mystery of cytochrome P450 compound I: a mini-review dedicated to Klaus Ruckpaul. Biochim Biophys Acta 1814:46–57CrossRef Jung C (2011) The mystery of cytochrome P450 compound I: a mini-review dedicated to Klaus Ruckpaul. Biochim Biophys Acta 1814:46–57CrossRef
6.
go back to reference Williams PA, Cosme J, Ward A, Angove HC, Vinkovic DM, Jhoti H (2003) Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424:464–468. Williams PA, Cosme J, Ward A, Angove HC, Vinkovic DM, Jhoti H (2003) Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424:464–468.
7.
go back to reference Williams PA, Cosme J, Vinković DM, Ward A, Angove HC, Day PJ, Vonrhein C, Tickle IJ, Jhoti H (2004) Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 305:683–686 Williams PA, Cosme J, Vinković DM, Ward A, Angove HC, Day PJ, Vonrhein C, Tickle IJ, Jhoti H (2004) Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 305:683–686
8.
go back to reference Sansen S, Yano JK, Reynald RL, Schoch GA, Griffin KJ, Stout CD, Johnson EF (2007) Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J Biol Chem 282:14348–14355CrossRef Sansen S, Yano JK, Reynald RL, Schoch GA, Griffin KJ, Stout CD, Johnson EF (2007) Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J Biol Chem 282:14348–14355CrossRef
9.
go back to reference Porubsky PR, Meneely KM, Scott EE (2008) Structures of human cytochrome P-450 2E1. J Biol Chem 283:33698–33707CrossRef Porubsky PR, Meneely KM, Scott EE (2008) Structures of human cytochrome P-450 2E1. J Biol Chem 283:33698–33707CrossRef
10.
go back to reference Rhieu SY, Ludwig DR, Siu VS, Palmore GTR (2009) Direct electrochemistry of cytochrome P450 27B1 in surfactant films. Electrochem Commun 11:1857–1860CrossRef Rhieu SY, Ludwig DR, Siu VS, Palmore GTR (2009) Direct electrochemistry of cytochrome P450 27B1 in surfactant films. Electrochem Commun 11:1857–1860CrossRef
11.
go back to reference Newcomb M, Zhang R, Chandrasena REP, Halgrimson JA, Horner JH, Makris TM, Sligar SG (2006) Cytochrome P450 compound I. J Am Chem Soc 128:4580–4581CrossRef Newcomb M, Zhang R, Chandrasena REP, Halgrimson JA, Horner JH, Makris TM, Sligar SG (2006) Cytochrome P450 compound I. J Am Chem Soc 128:4580–4581CrossRef
12.
go back to reference Nordblom GD, White RE, Coon MJ (1976) Studies on hydroperoxide-dependent substrate hydroxylation by purified liver microsomal cytochrome P-450. Arch Biochem Biophys 175:524–533CrossRef Nordblom GD, White RE, Coon MJ (1976) Studies on hydroperoxide-dependent substrate hydroxylation by purified liver microsomal cytochrome P-450. Arch Biochem Biophys 175:524–533CrossRef
13.
go back to reference Rittle J, Green MT (2010) Cytochrome P450 compound I: capture, characterization, and C-H bond activation kinetics. Science 330:933–937CrossRef Rittle J, Green MT (2010) Cytochrome P450 compound I: capture, characterization, and C-H bond activation kinetics. Science 330:933–937CrossRef
14.
go back to reference Vincent KA, Parkin A, Armstrong FA (2007) Investigating and exploiting the electrocatalytic properties of hydrogenases. Chem Rev 107:4366–4413CrossRef Vincent KA, Parkin A, Armstrong FA (2007) Investigating and exploiting the electrocatalytic properties of hydrogenases. Chem Rev 107:4366–4413CrossRef
15.
go back to reference Armstrong FA (1997) In: Lenz G, Milazzo G (eds) Bioelectrochemistry of biomacromolecules. Birkhauser Verlag, Basel, pp 205–255 Armstrong FA (1997) In: Lenz G, Milazzo G (eds) Bioelectrochemistry of biomacromolecules. Birkhauser Verlag, Basel, pp 205–255
16.
go back to reference Rusling JF, Zhang Z (2002) In: Chambers JQ, Brajter-Toth A (eds) Electroanalytical methods for biological materials. Marcel Dekker, New York, pp 195–231 Rusling JF, Zhang Z (2002) In: Chambers JQ, Brajter-Toth A (eds) Electroanalytical methods for biological materials. Marcel Dekker, New York, pp 195–231
17.
go back to reference Rusling JF, Zhang Z (2001) In: Nalwa RW (ed) Handbook of surfaces and interfaces of materials: biomolecules, biointerfaces, and applications, vol 5. Academic Press, Cambridge, pp 33–71 Rusling JF, Zhang Z (2001) In: Nalwa RW (ed) Handbook of surfaces and interfaces of materials: biomolecules, biointerfaces, and applications, vol 5. Academic Press, Cambridge, pp 33–71
18.
go back to reference Bowden EF, Hawkridge FM, Blount HN (1985) In: Srinivasan S, Chizmadzhev YA, Bockris JO’M, Conway BE, Yeager E (eds) Comprehensive treatise of electrochemistry, vol 10. Plenum, New York, pp 297–346 Bowden EF, Hawkridge FM, Blount HN (1985) In: Srinivasan S, Chizmadzhev YA, Bockris JO’M, Conway BE, Yeager E (eds) Comprehensive treatise of electrochemistry, vol 10. Plenum, New York, pp 297–346
19.
go back to reference Armstrong FA (1990) In: Bioinorganic chemistry: structure and bonding. Springer, Berlin, pp 137–221 Armstrong FA (1990) In: Bioinorganic chemistry: structure and bonding. Springer, Berlin, pp 137–221
20.
go back to reference Yeh P, Kuwana T (1997) Reversible electrode reaction of cytochrome c. Chem Lett 6:1145–1148 Yeh P, Kuwana T (1997) Reversible electrode reaction of cytochrome c. Chem Lett 6:1145–1148
21.
go back to reference Eddowes MJ, Hill HAO (1977) Novel method for the investigation of the electrochemistry of metalloproteins: cytochrome c. J Chem Soc Chem Commun 21:771–772 Eddowes MJ, Hill HAO (1977) Novel method for the investigation of the electrochemistry of metalloproteins: cytochrome c. J Chem Soc Chem Commun 21:771–772
22.
go back to reference Armstrong FA, Hill HAO, Walton NJ (1988) Direct electrochemistry of redox proteins. Acc Chem Res 21:407–413CrossRef Armstrong FA, Hill HAO, Walton NJ (1988) Direct electrochemistry of redox proteins. Acc Chem Res 21:407–413CrossRef
23.
go back to reference Faulkner KM, Shet MS, Fisher CW, Estabrook RW (1995) Electrocatalytically driven omega-hydroxylation of fatty acids using cytochrome P450 4A1. Proc Nat Acad Sci USA 92:7705–7709 Faulkner KM, Shet MS, Fisher CW, Estabrook RW (1995) Electrocatalytically driven omega-hydroxylation of fatty acids using cytochrome P450 4A1. Proc Nat Acad Sci USA 92:7705–7709
24.
go back to reference Estabrook RW, Faulkner KM, Shet MS, Fisher CW (1996) Application of electrochemistry for P450-catalyzed reactions. Methods Enzymol 272:44–50 Estabrook RW, Faulkner KM, Shet MS, Fisher CW (1996) Application of electrochemistry for P450-catalyzed reactions. Methods Enzymol 272:44–50
25.
go back to reference Vilker VL, Kahn F, Shen D, Baizer MM, Nobe K (1988) In: Dryhurst G, Niki K (ed) Redox chemistry and interfacial behavior of biological molecules. Plenum, New York, pp 105–112 Vilker VL, Kahn F, Shen D, Baizer MM, Nobe K (1988) In: Dryhurst G, Niki K (ed) Redox chemistry and interfacial behavior of biological molecules. Plenum, New York, pp 105–112
26.
27.
go back to reference Zilly FE, Taglieber A, Schulz F, Hollmann F, Reetz MT (2009) Deazaflavins as mediators in light-driven cytochrome P450 catalyzed hydroxylations. Chem Commun 46:7152–7154 Zilly FE, Taglieber A, Schulz F, Hollmann F, Reetz MT (2009) Deazaflavins as mediators in light-driven cytochrome P450 catalyzed hydroxylations. Chem Commun 46:7152–7154
28.
go back to reference Kazlauskaite J, Westlake ACG, Wong L-L, Hill HAO (1996) Direct electrochemistry of cytochrome P450cam. Chem Commun 18:2189–2190 Kazlauskaite J, Westlake ACG, Wong L-L, Hill HAO (1996) Direct electrochemistry of cytochrome P450cam. Chem Commun 18:2189–2190
29.
go back to reference Rusling JF, Zhang Z (2003) In: Rusling JF (ed) Biomolecular films, Marcel Dekker, New York, pp 1–64 Rusling JF, Zhang Z (2003) In: Rusling JF (ed) Biomolecular films, Marcel Dekker, New York, pp 1–64
30.
go back to reference Rusling JF, Wang B, Yun SE (2008) In Bartlett PN (ed) Bioelectrochemistry, John Wiley, New York, pp 39–86 Rusling JF, Wang B, Yun SE (2008) In Bartlett PN (ed) Bioelectrochemistry, John Wiley, New York, pp 39–86
31.
go back to reference Yang M, Kabulski JL, Wollenberg L, Chen X, Subramanian M, Tracy TS, Lederman D, Gannett PM, Wu N (2009) Electrocatalytic drug metabolism by CYP2C9 bonded to a self-assembled monolayer-modified electrode. Drug Metab Dispos 37:892–899 Yang M, Kabulski JL, Wollenberg L, Chen X, Subramanian M, Tracy TS, Lederman D, Gannett PM, Wu N (2009) Electrocatalytic drug metabolism by CYP2C9 bonded to a self-assembled monolayer-modified electrode. Drug Metab Dispos 37:892–899
32.
go back to reference Todorovic S, Jung C, Hildebrandt P, Murgida DH (2006) Conformational transitions and redox potential shifts of cytochrome P450 induced by immobilization. J Biol Inorg Chem 11:119–127 Todorovic S, Jung C, Hildebrandt P, Murgida DH (2006) Conformational transitions and redox potential shifts of cytochrome P450 induced by immobilization. J Biol Inorg Chem 11:119–127
33.
go back to reference Ferrero VEV, Andolfi L, Nardo GD, Sadeghi SJ, Fantuzzi A, Cannistraro S, Gilardi G (2008) Protein and electrode engineering for the covalent immobilization of P450 bmp on gold. Anal Chem 80:8438–8446CrossRef Ferrero VEV, Andolfi L, Nardo GD, Sadeghi SJ, Fantuzzi A, Cannistraro S, Gilardi G (2008) Protein and electrode engineering for the covalent immobilization of P450 bmp on gold. Anal Chem 80:8438–8446CrossRef
34.
go back to reference Fantuzzi A, Fairhead M, Gilardi G (2004) Direct electrochemistry of immobilized human cytochrome P450 2E1. J Am Chem Soc 126:5040–5041CrossRef Fantuzzi A, Fairhead M, Gilardi G (2004) Direct electrochemistry of immobilized human cytochrome P450 2E1. J Am Chem Soc 126:5040–5041CrossRef
35.
go back to reference Tanvir S, Pantigny J, Boulnois P, Pulvin S (2009) Covalent immobilization of recombinant human cytochrome CYP2E1 and glucose-6-phosphate dehydrogenase in alumina membrane for drug screening applications. J Membr Sci 329:85–90CrossRef Tanvir S, Pantigny J, Boulnois P, Pulvin S (2009) Covalent immobilization of recombinant human cytochrome CYP2E1 and glucose-6-phosphate dehydrogenase in alumina membrane for drug screening applications. J Membr Sci 329:85–90CrossRef
36.
go back to reference Zhang Z, Nassar A-EF, Lu Z, Schenkman JB, Rusling JF (1997) Direct electron injection from electrodes to cytochrome P450 cam in biomembrane-like films. J Chem Soc Faraday Trans 93:1769–1774CrossRef Zhang Z, Nassar A-EF, Lu Z, Schenkman JB, Rusling JF (1997) Direct electron injection from electrodes to cytochrome P450 cam in biomembrane-like films. J Chem Soc Faraday Trans 93:1769–1774CrossRef
37.
go back to reference Lvov YM, Lu Z, Schenkman JB, Zu X, Rusling JF (1998) Direct electrochemistry of myoglobin and cytochrome P450 cam in alternate layer-by-layer films with DNA and other polyions. J Am Chem Soc 120:4073–4080CrossRef Lvov YM, Lu Z, Schenkman JB, Zu X, Rusling JF (1998) Direct electrochemistry of myoglobin and cytochrome P450 cam in alternate layer-by-layer films with DNA and other polyions. J Am Chem Soc 120:4073–4080CrossRef
38.
go back to reference Zu X, Lu Z, Zhang Z, Schenkman JB, Rusling JF (1999) Electroenzyme-catalyzed oxidation of styrene and cis-β-methylstyrene using thin films of cytochrome P450 cam and myoglobin. Langmuir 15:7372–7377 Zu X, Lu Z, Zhang Z, Schenkman JB, Rusling JF (1999) Electroenzyme-catalyzed oxidation of styrene and cis-β-methylstyrene using thin films of cytochrome P450 cam and myoglobin. Langmuir 15:7372–7377
39.
go back to reference Munge B, Estavillo C, Schenkman JB, Rusling JF (2003) Optimization of electrochemical and peroxide-driven oxidation of styrene with ultrathin polyion films containing cytochrome P450 cam and myoglobin. Chem Bio Chem 4:82–89 Munge B, Estavillo C, Schenkman JB, Rusling JF (2003) Optimization of electrochemical and peroxide-driven oxidation of styrene with ultrathin polyion films containing cytochrome P450 cam and myoglobin. Chem Bio Chem 4:82–89
40.
go back to reference Estavillo C, Lu Z, Jansson I, Schenkman JB, Rusling JF (2003) Epoxidation of styrene by human cyt P450 1A2 by thin film electrolysis and peroxide activation compared to solution reactions. Biophys Chem 104:291–296 Estavillo C, Lu Z, Jansson I, Schenkman JB, Rusling JF (2003) Epoxidation of styrene by human cyt P450 1A2 by thin film electrolysis and peroxide activation compared to solution reactions. Biophys Chem 104:291–296
41.
go back to reference Krishnan S, Schenkman JB, Rusling JF (2011) Bioelectronic delivery of electrons to cytochrome P450 enzymes. J Phys Chem B 115:8371–8380CrossRef Krishnan S, Schenkman JB, Rusling JF (2011) Bioelectronic delivery of electrons to cytochrome P450 enzymes. J Phys Chem B 115:8371–8380CrossRef
42.
go back to reference Bistolas N, Wollenberger U, Jung C, Scheller FW (2005) Cytochrome P450 biosensors-a review. Biosens Bioelec 20:2408–2423CrossRef Bistolas N, Wollenberger U, Jung C, Scheller FW (2005) Cytochrome P450 biosensors-a review. Biosens Bioelec 20:2408–2423CrossRef
43.
go back to reference Krishnan S, Rusling JF (2013) Thin iron heme enzyme films on electrodes and nanoparticles for biocatalysis. In: S. Suib (ed) New and future developments in catalysis. Elsevier Publishers, Amsterdam, p. 125 Krishnan S, Rusling JF (2013) Thin iron heme enzyme films on electrodes and nanoparticles for biocatalysis. In: S. Suib (ed) New and future developments in catalysis. Elsevier Publishers, Amsterdam, p. 125
44.
go back to reference Fleming BD, Johnson DL, Bond AM, Martin LL (2006) Recent progress in cytochrome P450 enzyme electrochemistry. Expert Opin Drug Metab Toxicol 2:581–589CrossRef Fleming BD, Johnson DL, Bond AM, Martin LL (2006) Recent progress in cytochrome P450 enzyme electrochemistry. Expert Opin Drug Metab Toxicol 2:581–589CrossRef
45.
go back to reference Schneider E, Clark DS (2013) Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens Bioelec 39:1–13CrossRef Schneider E, Clark DS (2013) Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens Bioelec 39:1–13CrossRef
46.
go back to reference Dodhia VR, Gilardi G (2009) In: Davis J (ed) Engineering the bioelectronic interface: applications to analyte biosensing and protein detection. RSC publications, London, pp 153–189 Dodhia VR, Gilardi G (2009) In: Davis J (ed) Engineering the bioelectronic interface: applications to analyte biosensing and protein detection. RSC publications, London, pp 153–189
47.
go back to reference Krishnan S, Abeykoon A, Schenkman JB, Rusling JF (2009) Control of electrochemical and ferryloxy formation kinetics of cyt P450s in polyion films by heme iron spin state and secondary structure. J Am Chem Soc 131:16215–16224CrossRef Krishnan S, Abeykoon A, Schenkman JB, Rusling JF (2009) Control of electrochemical and ferryloxy formation kinetics of cyt P450s in polyion films by heme iron spin state and secondary structure. J Am Chem Soc 131:16215–16224CrossRef
48.
go back to reference Bard A, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New Jersey Bard A, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New Jersey
49.
go back to reference Heering HA, Hirst J, Armstrong FA (1998) Interpreting the catalytic voltammetry of electroactive enzymes adsorbed on electrodes. J Phys Chem B 102:6889–6902CrossRef Heering HA, Hirst J, Armstrong FA (1998) Interpreting the catalytic voltammetry of electroactive enzymes adsorbed on electrodes. J Phys Chem B 102:6889–6902CrossRef
50.
go back to reference Guto PM, Rusling JF (2005) Enzyme-like kinetics of ferryloxy myoglobin formation in films on electrodes in microemulsions. J Phys Chem B 109:24457–24464CrossRef Guto PM, Rusling JF (2005) Enzyme-like kinetics of ferryloxy myoglobin formation in films on electrodes in microemulsions. J Phys Chem B 109:24457–24464CrossRef
51.
go back to reference Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. J Biol Chem 239:2379–2385 Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. J Biol Chem 239:2379–2385
52.
go back to reference Sandhu P, Guo Z, Baba T, Martin MV, Tukey RH, Guengerich FP (1994) Expression of modified human cytochrome P450 1A2 in Escherichia coli: stabilization, purification, spectral characterization, and catalytic activities of the enzyme. Arch Biochem Biophys 309:168–177CrossRef Sandhu P, Guo Z, Baba T, Martin MV, Tukey RH, Guengerich FP (1994) Expression of modified human cytochrome P450 1A2 in Escherichia coli: stabilization, purification, spectral characterization, and catalytic activities of the enzyme. Arch Biochem Biophys 309:168–177CrossRef
53.
go back to reference Sligar SG, Gunsalus IC (1976) A thermodynamic model of regulation: modulation of redox equilibria in camphor monoxygenase. Proc Natl Acad Sci USA 73:1078–1082CrossRef Sligar SG, Gunsalus IC (1976) A thermodynamic model of regulation: modulation of redox equilibria in camphor monoxygenase. Proc Natl Acad Sci USA 73:1078–1082CrossRef
54.
go back to reference Das A, Grinkova YV, Sligar SG (2007) Redox potential control by drug binding to cytochrome P450 3A4. J Am Chem Soc 129:13778–13779 Das A, Grinkova YV, Sligar SG (2007) Redox potential control by drug binding to cytochrome P450 3A4. J Am Chem Soc 129:13778–13779
55.
go back to reference Sligar SG (1976) Coupling of spin, substrate, and redox equilibriums in cytochrome P450. Biochemistry 15:5399–5406 Sligar SG (1976) Coupling of spin, substrate, and redox equilibriums in cytochrome P450. Biochemistry 15:5399–5406
56.
go back to reference Johnson DL, Conley AJ, Martin LL (2006) Direct electrochemistry of human, bovine and porcine cytochrome P450c17. J Mol Endocrinol 36:349–359CrossRef Johnson DL, Conley AJ, Martin LL (2006) Direct electrochemistry of human, bovine and porcine cytochrome P450c17. J Mol Endocrinol 36:349–359CrossRef
57.
go back to reference Iwuoha EI, Kane S, Ania CO, Smyth MR, Ortiz de Montellano PR, Fuhr U (2000) Reactivities of organic phase biosensors 3: electrochemical study of cytochrome P450 cam immobilised in a methyltriethoxysilane sol-gel. Electroanalysis 12:980–986CrossRef Iwuoha EI, Kane S, Ania CO, Smyth MR, Ortiz de Montellano PR, Fuhr U (2000) Reactivities of organic phase biosensors 3: electrochemical study of cytochrome P450 cam immobilised in a methyltriethoxysilane sol-gel. Electroanalysis 12:980–986CrossRef
58.
go back to reference Lei C, Wollenberger U, Jung C, Scheller FW (2000) Clay-bridged electron transfer between cytochrome P450 cam and electrode. Biochem Biophys Res Commun 268:740–744CrossRef Lei C, Wollenberger U, Jung C, Scheller FW (2000) Clay-bridged electron transfer between cytochrome P450 cam and electrode. Biochem Biophys Res Commun 268:740–744CrossRef
59.
go back to reference Joseph S, Rusling JF, Lvov YM, Friedberg T, Fuhr U (2003) An amperometric biosensor with human CYP3A4 as a novel drug screening tool. Biochem Pharmacol 65:1817–1826CrossRef Joseph S, Rusling JF, Lvov YM, Friedberg T, Fuhr U (2003) An amperometric biosensor with human CYP3A4 as a novel drug screening tool. Biochem Pharmacol 65:1817–1826CrossRef
60.
go back to reference Feng D, Schultz FA (1988) Relationship between structural change and heterogeneous electron-transfer rate constant in iron-tetraphenylporphyrin complexes. Inorg Chem 27:2144–2149CrossRef Feng D, Schultz FA (1988) Relationship between structural change and heterogeneous electron-transfer rate constant in iron-tetraphenylporphyrin complexes. Inorg Chem 27:2144–2149CrossRef
61.
go back to reference Cirino PC, Arnold FH (2003) A self-sufficient peroxide-driven hydroxylation biocatalyst. Angew Chem Int Ed 42:3299–3301CrossRef Cirino PC, Arnold FH (2003) A self-sufficient peroxide-driven hydroxylation biocatalyst. Angew Chem Int Ed 42:3299–3301CrossRef
62.
go back to reference Reipa V, Mayhew MP, Vilker VL (1997) A direct electrode-driven P450 cycle for biocatalysis. Proc Natl Acad Sci USA 94:13554–13558CrossRef Reipa V, Mayhew MP, Vilker VL (1997) A direct electrode-driven P450 cycle for biocatalysis. Proc Natl Acad Sci USA 94:13554–13558CrossRef
63.
go back to reference Paternolli C, Antonini M, Ghisellini P, Nicolini C (2004) Recombinant cytochrome p450 immobilization for biosensor applications. Langmuir 20:11706–11712CrossRef Paternolli C, Antonini M, Ghisellini P, Nicolini C (2004) Recombinant cytochrome p450 immobilization for biosensor applications. Langmuir 20:11706–11712CrossRef
64.
go back to reference Liu S, Peng L, Yang X, Wu Y, He L (2008) Electrochemistry of cytochrome P450 enzyme on nanoparticle-containing membrane-coated electrode and its applications for drug sensing. Anal Biochem 375:209–216CrossRef Liu S, Peng L, Yang X, Wu Y, He L (2008) Electrochemistry of cytochrome P450 enzyme on nanoparticle-containing membrane-coated electrode and its applications for drug sensing. Anal Biochem 375:209–216CrossRef
65.
go back to reference Dai C, Ding Y, Li M, Fei J (2012) Direct electrochemistry of cytochrome P450 in a biocompatible film composed of an epoxy polymer and acetylene black. Microchim Acta 176:397–404CrossRef Dai C, Ding Y, Li M, Fei J (2012) Direct electrochemistry of cytochrome P450 in a biocompatible film composed of an epoxy polymer and acetylene black. Microchim Acta 176:397–404CrossRef
66.
go back to reference Sun P, Wu Y (2013) An amperometric biosensor based on human cytochrome P450 2C9 in polyacrylamide hydrogel films for bisphenol A determination. Sens Actuators B 178:113–118CrossRef Sun P, Wu Y (2013) An amperometric biosensor based on human cytochrome P450 2C9 in polyacrylamide hydrogel films for bisphenol A determination. Sens Actuators B 178:113–118CrossRef
67.
go back to reference Wasalathanthri DP, Li D, Song D, Zheng Z, Choudhary D, Jansson I, Lu X, Schenkman JB, Rusling JF (2015) Elucidating organ-specific metabolic toxicity chemistry from Electrochemiluminescent Enzyme/DNA arrays and bioreactor BeadLC-MS/MS. Chem Sci 6:2457–2468 Wasalathanthri DP, Li D, Song D, Zheng Z, Choudhary D, Jansson I, Lu X, Schenkman JB, Rusling JF (2015) Elucidating organ-specific metabolic toxicity chemistry from Electrochemiluminescent Enzyme/DNA arrays and bioreactor BeadLC-MS/MS. Chem Sci 6:2457–2468
68.
go back to reference Hvastkovs EG, So M, Krishnan S, Bajrami B, Tarun M, Jansson I, Schenkman JB, Rusling JF (2007) Electrochemiluminescent arrays for cytochrome P450-activated genotoxicity screening. DNA damage from Benzo[a]pyrene Metabolites. Anal Chem 79:1897–1906 Hvastkovs EG, So M, Krishnan S, Bajrami B, Tarun M, Jansson I, Schenkman JB, Rusling JF (2007) Electrochemiluminescent arrays for cytochrome P450-activated genotoxicity screening. DNA damage from Benzo[a]pyrene Metabolites. Anal Chem 79:1897–1906
69.
go back to reference Krishnan S, Hvastkovs EG, Bajrami B, Choudhary D, Schenkman JB, Rusling JF (2008) Synergistic metabolic toxicity screening using Microsome/DNA Electrochemiluminescent arrays and nanoreactors. Anal Chem 80:5279–5285 Krishnan S, Hvastkovs EG, Bajrami B, Choudhary D, Schenkman JB, Rusling JF (2008) Synergistic metabolic toxicity screening using Microsome/DNA Electrochemiluminescent arrays and nanoreactors. Anal Chem 80:5279–5285
70.
go back to reference Wasalathanthri DP, Malla S, Bist I, Tang CK, Faria RC, Rusling JF (2013) High-throughput metabolic genotoxicity screening with a fluidic microwell chip and electrochemiluminescence. Lab Chip 13:4554–4562 Wasalathanthri DP, Malla S, Bist I, Tang CK, Faria RC, Rusling JF (2013) High-throughput metabolic genotoxicity screening with a fluidic microwell chip and electrochemiluminescence. Lab Chip 13:4554–4562
71.
go back to reference Krishnan S, Wasalathanthri D, Zhao L, Schenkman JB, Rusling JF (2011) Efficient bioelectronic actuation of the natural catalytic pathway of human metabolic cytochrome P450s. J Am Chem Soc 133:1459–1465CrossRef Krishnan S, Wasalathanthri D, Zhao L, Schenkman JB, Rusling JF (2011) Efficient bioelectronic actuation of the natural catalytic pathway of human metabolic cytochrome P450s. J Am Chem Soc 133:1459–1465CrossRef
72.
go back to reference Dodhia VR, Sassone C, Fantuzzi A, Nardo GD, Sadeghi SJ, Gilardi G (2008) Modulating the coupling efficiency of human cytochrome P450 CYP3A4 at electrode surfaces through protein engineering. Electrochem Commun 10:1744–1747CrossRef Dodhia VR, Sassone C, Fantuzzi A, Nardo GD, Sadeghi SJ, Gilardi G (2008) Modulating the coupling efficiency of human cytochrome P450 CYP3A4 at electrode surfaces through protein engineering. Electrochem Commun 10:1744–1747CrossRef
73.
go back to reference Walgama C, Nerimetla R, Materer NF, Schildkraut D, Elman JF, Krishnan S (2015) A simple construction of electrochemical liver microsomal bioreactor for rapid drug metabolism and inhibition assays. Anal Chem 87:4712–4718CrossRef Walgama C, Nerimetla R, Materer NF, Schildkraut D, Elman JF, Krishnan S (2015) A simple construction of electrochemical liver microsomal bioreactor for rapid drug metabolism and inhibition assays. Anal Chem 87:4712–4718CrossRef
74.
go back to reference Sultana N, Schenkman JB, Rusling JF (2005) Protein film electrochemistry of microsomes genetically enriched in human cytochrome P450 monooxygenases. J Am Chem Soc 127:13460–13461CrossRef Sultana N, Schenkman JB, Rusling JF (2005) Protein film electrochemistry of microsomes genetically enriched in human cytochrome P450 monooxygenases. J Am Chem Soc 127:13460–13461CrossRef
75.
go back to reference Mie Y, Suzuki M, Komatsu Y (2009) Electrochemically driven drug metabolism by membranes containing human cytochrome P450. J Am Chem Soc 131:6646–6647CrossRef Mie Y, Suzuki M, Komatsu Y (2009) Electrochemically driven drug metabolism by membranes containing human cytochrome P450. J Am Chem Soc 131:6646–6647CrossRef
76.
go back to reference Bajrami B, Krishnan S, Rusling JF (2008) Microsome biocolloids for rapid drug metabolism and inhibition assessment by LC-MS. Drug Metab Lett 2:158–162CrossRef Bajrami B, Krishnan S, Rusling JF (2008) Microsome biocolloids for rapid drug metabolism and inhibition assessment by LC-MS. Drug Metab Lett 2:158–162CrossRef
77.
go back to reference Rudakov YO, Shumyantseva VV, Bulko TV, Suprun EV, Kuznetsova GP, Samenkova NF, Archakov AI (2008) Stoichiometry of electrocatalytic cycle of cytochrome P450 2B4. J Inorg Biochem 102:2020–2025CrossRef Rudakov YO, Shumyantseva VV, Bulko TV, Suprun EV, Kuznetsova GP, Samenkova NF, Archakov AI (2008) Stoichiometry of electrocatalytic cycle of cytochrome P450 2B4. J Inorg Biochem 102:2020–2025CrossRef
78.
go back to reference Chatterjee S, Sengupta K, Samanta S, Kumar Das P, Dey A (2013) Electrocatalytic O2 reduction reaction by synthetic analogues of cytochrome P450 and myoglobin: in-situ resonance raman and dynamic electrochemistry investigations. Inorg Chem 52:9897–9907 Chatterjee S, Sengupta K, Samanta S, Kumar Das P, Dey A (2013) Electrocatalytic O2 reduction reaction by synthetic analogues of cytochrome P450 and myoglobin: in-situ resonance raman and dynamic electrochemistry investigations. Inorg Chem 52:9897–9907
79.
go back to reference Wong A, de Vasconcelos Lanza MR, Sotomayor MDPT (2013) Sensor for diuron quantitation based on the P450 biomimetic catalyst nickel(II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine. J Electroanal Chem 690:83–88 Wong A, de Vasconcelos Lanza MR, Sotomayor MDPT (2013) Sensor for diuron quantitation based on the P450 biomimetic catalyst nickel(II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine. J Electroanal Chem 690:83–88
80.
go back to reference da Silva DC, De Freitas-Silva G, do Nascimento E, Rebouças JS, Barbeira PJS, Dai de Carvalho MEM, Idemori YM (2008) Spectral, electrochemical, and catalytic properties of a homologous series of manganese porphyrins as cytochrome P450 model: the effect of the degree of β-bromination. J Inorg Biochem 102:1932–1941 da Silva DC, De Freitas-Silva G, do Nascimento E, Rebouças JS, Barbeira PJS, Dai de Carvalho MEM, Idemori YM (2008) Spectral, electrochemical, and catalytic properties of a homologous series of manganese porphyrins as cytochrome P450 model: the effect of the degree of β-bromination. J Inorg Biochem 102:1932–1941
Metadata
Title
Electrochemically Activated Catalytic Pathways of Human Metabolic Cytochrome P450s in Ultrathin Films
Authors
Sadagopan Krishnan
James F. Rusling
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-31332-0_2