Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 9/2017

21-01-2017

Electromagnetic interference shielding performance and electromagnetic properties of wood-plastic nanocomposite with graphene nanoplatelets

Authors: Ibrahim Karteri, Mahmut Altun, Mahit Gunes

Published in: Journal of Materials Science: Materials in Electronics | Issue 9/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract:

In this paper, we investigated the electromagnetic interference (EMI) shielding effectiveness of wood-polyvinyl chloride (WP)/graphene nanoplatelets (GNP) nanocomposites (0–9 wt%) which are flexible, lightweight, and resistant, and its EMI shielding performance increases based on the enhancement of graphene amount in nanocomposites. The increase of EMI shielding ability is attributed to the electromagnetic properties of the WP/GNP nanocomposites, such as permeability and permittivity. Scanning electron microscopy pictures show that GNP, even at low proportions, had a good dispersion in WP. This study is achieved by the composites that we produced in laboratory conditions with five different combinations of graphene nanoplatelets, wood, and polyvinyl chloride. According to observation, GNP loading to WP regularly increased its permeability and permittivity so that reaching to good shielding effectiveness. When we look into the contributions of reflection and absorption to the total shielding performance, shielding mostly occurred in reflection mechanism. In addition to that, the WP/GNP-5 nanocomposite with 9 wt% graphene nanoplatelets revealed the highest value of EMI shielding effectiveness (approximately 26 dB) over 8–9 GHz frequency range.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Kashi, R.K. Gupta, T. Baum, N. Kao, S.N. Bhattacharya, “Morphology, electromagnetic properties and electromagnetic interference shielding performance of poly lactide/graphene nanoplatelet nanocomposites. Mater. Des. 95, 119–126 (2016)CrossRef S. Kashi, R.K. Gupta, T. Baum, N. Kao, S.N. Bhattacharya, “Morphology, electromagnetic properties and electromagnetic interference shielding performance of poly lactide/graphene nanoplatelet nanocomposites. Mater. Des. 95, 119–126 (2016)CrossRef
2.
go back to reference L.-L. Wang, B.-K. Tay, K.-Y. See, Z. Sun, L.-K. Tan, D. Lua, “Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing”. Carbon 47, 1905–1910 (2009)CrossRef L.-L. Wang, B.-K. Tay, K.-Y. See, Z. Sun, L.-K. Tan, D. Lua, “Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing”. Carbon 47, 1905–1910 (2009)CrossRef
3.
go back to reference S.-T. Hsiao, C.-C. M. Ma, W-H. Liao, Y-S. Wang, S-M. Li, Y-C. Huang, R-B. Yang, and W-F. Liang, “Lightweight and Flexible Reduced Graphene Oxide/Water-Borne Polyurethane Composites with High Electrical Conductivity and Excellent Electromagnetic Interference Shielding Performance, ACS Appl. Mater. 6, 10667–10678 (2014).CrossRef S.-T. Hsiao, C.-C. M. Ma, W-H. Liao, Y-S. Wang, S-M. Li, Y-C. Huang, R-B. Yang, and W-F. Liang, “Lightweight and Flexible Reduced Graphene Oxide/Water-Borne Polyurethane Composites with High Electrical Conductivity and Excellent Electromagnetic Interference Shielding Performance, ACS Appl. Mater. 6, 10667–10678 (2014).CrossRef
4.
go back to reference W. Al-Shabib, S. W. Lachowicz, “Modelling of Intrinsic Conducting Polymer for Wi-Fi Electromagnetic Interference Shielding,” Science and Information Conference 2013, London, UK, 7–9 October 2013. W. Al-Shabib, S. W. Lachowicz, “Modelling of Intrinsic Conducting Polymer for Wi-Fi Electromagnetic Interference Shielding,” Science and Information Conference 2013, London, UK, 7–9 October 2013.
5.
go back to reference P.C.P. Watts, W.K. Hsu, A. Barnes, B. Chambers, “High permittivity from defective multiwalled carbon nanotubes in the X-Band. Adv. Mater. 15, 7–8 (2003)CrossRef P.C.P. Watts, W.K. Hsu, A. Barnes, B. Chambers, “High permittivity from defective multiwalled carbon nanotubes in the X-Band. Adv. Mater. 15, 7–8 (2003)CrossRef
6.
go back to reference L. Kong, X. Yin, X. Yuan, Y. Zhang, X. Liu, L. Cheng, L. Zang, “Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites”. Carbon 73, 185–193 (2014)CrossRef L. Kong, X. Yin, X. Yuan, Y. Zhang, X. Liu, L. Cheng, L. Zang, “Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites”. Carbon 73, 185–193 (2014)CrossRef
7.
go back to reference B. Wen, X.X. Wang, W.Q. Cao, H.L. Shi, M.M. Lu, G. Wang, H.B. Jin, W.Z. Wang, J. Yuan, M.S. Cao, “Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world”. Nanoscale 6, 5754–5761 (2014)CrossRef B. Wen, X.X. Wang, W.Q. Cao, H.L. Shi, M.M. Lu, G. Wang, H.B. Jin, W.Z. Wang, J. Yuan, M.S. Cao, “Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world”. Nanoscale 6, 5754–5761 (2014)CrossRef
8.
go back to reference B. Shen, W. Zhai, W. Zheng, “Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24, 4548–4556 (2014) B. Shen, W. Zhai, W. Zheng, “Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24, 4548–4556 (2014)
9.
go back to reference B.J. Madhu, M. Gurusiddesh, T. Kiran, B. Shruthi, H.S. Jayanna, “Structural, dielectric, ac conductivity and electromagnetic shielding properties of polyaniline/Ni0.5Zn0.5Fe2O4 composites”. J. Mater. Sci. 27, 7760–7766 (2016) B.J. Madhu, M. Gurusiddesh, T. Kiran, B. Shruthi, H.S. Jayanna, “Structural, dielectric, ac conductivity and electromagnetic shielding properties of polyaniline/Ni0.5Zn0.5Fe2O4 composites”. J. Mater. Sci. 27, 7760–7766 (2016)
10.
go back to reference R.H. Guo, S.Q. Jiang, C.W.M. Yuen, M.C.F. Ng, “Microstructure and electromagnetic interference shielding effectiveness of electroless Ni–P plated polyester fabric”. J. Mater. Sci. 20, 735–740 (2009) R.H. Guo, S.Q. Jiang, C.W.M. Yuen, M.C.F. Ng, “Microstructure and electromagnetic interference shielding effectiveness of electroless Ni–P plated polyester fabric”. J. Mater. Sci. 20, 735–740 (2009)
11.
go back to reference F. Shahzad, S. Yu, P. Kumar, J.-W. Lee, Y.-H. Kim, S.M. Hong, C.M. Koo, “Sulfur doped graphene/polystyrene nanocomposites for electromagnetic interference shielding. Compos. Struct. 133, 1267–1275 (2015)CrossRef F. Shahzad, S. Yu, P. Kumar, J.-W. Lee, Y.-H. Kim, S.M. Hong, C.M. Koo, “Sulfur doped graphene/polystyrene nanocomposites for electromagnetic interference shielding. Compos. Struct. 133, 1267–1275 (2015)CrossRef
12.
go back to reference M. Faisal, S. Khasim, “Broadband electromagnetic shielding and dielectric properties of polyaniline–stannous oxide composites”. J. Mater. Sci. 24, 2202–2210 (2013) M. Faisal, S. Khasim, “Broadband electromagnetic shielding and dielectric properties of polyaniline–stannous oxide composites”. J. Mater. Sci. 24, 2202–2210 (2013)
13.
go back to reference N.C. Das, T.K. Chaki, D. Khastgir, and A. Chakraborty, “Electromagnetic interference shielding effectiveness of conductive carbon black and carbon fiber-filled composites based on rubber and rubber blends. Adv. Polym. Technol. 20, 226–236 (2001).CrossRef N.C. Das, T.K. Chaki, D. Khastgir, and A. Chakraborty, “Electromagnetic interference shielding effectiveness of conductive carbon black and carbon fiber-filled composites based on rubber and rubber blends. Adv. Polym. Technol. 20, 226–236 (2001).CrossRef
14.
go back to reference M.H. Al-Saleh, U. Sundararaj, “X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites “. J. Phys. D 46, 35304 (2013)CrossRef M.H. Al-Saleh, U. Sundararaj, “X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites “. J. Phys. D 46, 35304 (2013)CrossRef
15.
go back to reference Y. Yang, M.C. Gupta, and K.L. Dudley, Towards cost-efficient EMI shielding materials using carbon nanostructure-based nanocomposites. Nanotechnology 18, 345701 (2007)CrossRef Y. Yang, M.C. Gupta, and K.L. Dudley, Towards cost-efficient EMI shielding materials using carbon nanostructure-based nanocomposites. Nanotechnology 18, 345701 (2007)CrossRef
16.
go back to reference S.H. Park, P.T. Theilmann, P.M. Asbeck, P.R. Bandaru, “Enhanced electromagnetic interference shielding through the use of functionalized carbon nanotube-reactive polymer composites IEEE transactions on. Nanotechnology 9, 4 (2010) S.H. Park, P.T. Theilmann, P.M. Asbeck, P.R. Bandaru, “Enhanced electromagnetic interference shielding through the use of functionalized carbon nanotube-reactive polymer composites IEEE transactions on. Nanotechnology 9, 4 (2010)
17.
go back to reference L. Nayak, T.K. Chaki, D. Khastgir, “Electrical percolation behavior and electromagnetic shielding effectiveness of polyimide nanocomposites filled with carbon nanofibers. J. Appl. Polym. Sci. 131, 1–12 (2014)CrossRef L. Nayak, T.K. Chaki, D. Khastgir, “Electrical percolation behavior and electromagnetic shielding effectiveness of polyimide nanocomposites filled with carbon nanofibers. J. Appl. Polym. Sci. 131, 1–12 (2014)CrossRef
18.
go back to reference L.-L. Wang, B.-K. Tay, K.-Y. See, Z. Sun, L.-K. Tan, and D. Lua, “Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing. Carbon N. Y. 47 1905–1910 (2009).CrossRef L.-L. Wang, B.-K. Tay, K.-Y. See, Z. Sun, L.-K. Tan, and D. Lua, “Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing. Carbon N. Y. 47 1905–1910 (2009).CrossRef
19.
go back to reference M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, “EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study, Carbon N. Y. 60, 146–156 (2013).CrossRef M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, “EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study, Carbon N. Y. 60, 146–156 (2013).CrossRef
20.
go back to reference N.C. Das, T.K. Chaki, D. Khastgir, A. Chakraborty, ‘Electromagnetic interference shielding effectiveness of ethylene vinyl acetate based conductive composites containing carbon fillers’. J. Appl. Polym. Sci. 80, 1601–1608 (2001)CrossRef N.C. Das, T.K. Chaki, D. Khastgir, A. Chakraborty, ‘Electromagnetic interference shielding effectiveness of ethylene vinyl acetate based conductive composites containing carbon fillers’. J. Appl. Polym. Sci. 80, 1601–1608 (2001)CrossRef
21.
go back to reference I. Karteri, M. Güneş, Synthesis of reduced graphene oxide-phosphorus nanocomposites with a new approach for dye sensitized solar cells applications. J. Mater. Sci. 27, 11502–11508 (2016) I. Karteri, M. Güneş, Synthesis of reduced graphene oxide-phosphorus nanocomposites with a new approach for dye sensitized solar cells applications. J. Mater. Sci. 27, 11502–11508 (2016)
22.
23.
go back to reference S.K. Hong, K.Y. Kim, T.Y. Kim, J.H. Kim, S.W. Park, J.H. Kim, B.J. Cho, “Electromagnetic interference shielding effectiveness of monolayer graphene. Nanotechnology 23, 455704 (2012)CrossRef S.K. Hong, K.Y. Kim, T.Y. Kim, J.H. Kim, S.W. Park, J.H. Kim, B.J. Cho, “Electromagnetic interference shielding effectiveness of monolayer graphene. Nanotechnology 23, 455704 (2012)CrossRef
24.
go back to reference C. Wan, J. Li, “Graphene oxide/cellulose aerogels nanocomposite: Preparation, pyrolysis, and application for electromagnetic interference shielding. Carbohydr. Polym. 150, 172–179 (2016)CrossRef C. Wan, J. Li, “Graphene oxide/cellulose aerogels nanocomposite: Preparation, pyrolysis, and application for electromagnetic interference shielding. Carbohydr. Polym. 150, 172–179 (2016)CrossRef
25.
go back to reference K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, “Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, “Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRef
26.
go back to reference P. Modak, S.B. Kondawar, D.V. Nandanwar, “Synthesis and characterization of conducting polyaniline/graphene nanocomposites for electromagnetic interference shielding.” Proced. Mater. Sci. 10, 588–594 (2015)CrossRef P. Modak, S.B. Kondawar, D.V. Nandanwar, “Synthesis and characterization of conducting polyaniline/graphene nanocomposites for electromagnetic interference shielding.” Proced. Mater. Sci. 10, 588–594 (2015)CrossRef
27.
go back to reference H. Duan, J. Yang, Y. Yang, G. Zhao, Y. Liu, “TiO2 hybrid polypropylene/nickel coated glass fiber conductive composites for highly efficient electromagnetic interference shielding”. J. Mater. Sci. (2016) doi:10.1007/s10854-016-6244-0 H. Duan, J. Yang, Y. Yang, G. Zhao, Y. Liu, “TiO2 hybrid polypropylene/nickel coated glass fiber conductive composites for highly efficient electromagnetic interference shielding”. J. Mater. Sci. (2016) doi:10.​1007/​s10854-016-6244-0
28.
go back to reference J.L. Wojkiewicz, N.N. Hoang, N. Redon, J.L. Miane, “Intrinsically Conducting Nanocomposites: High Performance Electromagnetic Shielding Materials, (IEEE, New york, 2005), pp. 7803–9374 J.L. Wojkiewicz, N.N. Hoang, N. Redon, J.L. Miane, “Intrinsically Conducting Nanocomposites: High Performance Electromagnetic Shielding Materials, (IEEE, New york, 2005), pp. 7803–9374
29.
go back to reference Y. Yang, M. C. Gupta, and K. L. Dudley, “Studies on electromagnetic interference shielding characteristics of metal nanoparticle- and carbon nanostructure-filled polymer composites in the Ku-band frequency, Micro & Nano Lett. 2(4), 85–89 (2007).CrossRef Y. Yang, M. C. Gupta, and K. L. Dudley, “Studies on electromagnetic interference shielding characteristics of metal nanoparticle- and carbon nanostructure-filled polymer composites in the Ku-band frequency, Micro & Nano Lett. 2(4), 85–89 (2007).CrossRef
30.
go back to reference L. Jin, Z. Haiyan, L. Ping Y. Xijiang, and Z. Guoxun, “The electromagnetic shielding effectiveness of a low-cost and transparent stainless steel fiber/silicone resin composite, IEEE Trans. Electromagn. Compat. 56(2), 328–334 (2014).CrossRef L. Jin, Z. Haiyan, L. Ping Y. Xijiang, and Z. Guoxun, “The electromagnetic shielding effectiveness of a low-cost and transparent stainless steel fiber/silicone resin composite, IEEE Trans. Electromagn. Compat. 56(2), 328–334 (2014).CrossRef
31.
go back to reference D.D.L. Chung, “Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39, 279–285 (2001)CrossRef D.D.L. Chung, “Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39, 279–285 (2001)CrossRef
32.
go back to reference P. Verma, P. Saini, V. Choudhary, “Designing of carbon nanotube/polymer composites using melt recirculation approach: effect of aspect ratio on mechanical, electrical and EMI shielding response. Mater. Des. 88, 269–277 (2015)CrossRef P. Verma, P. Saini, V. Choudhary, “Designing of carbon nanotube/polymer composites using melt recirculation approach: effect of aspect ratio on mechanical, electrical and EMI shielding response. Mater. Des. 88, 269–277 (2015)CrossRef
33.
go back to reference L. Monnereau, L. Urbanczyk, J.-M. Thomassin, T. Pardoen, C. Bailly, I. Huynen, C. Jerome, C. Detrembleur, “Gradient foaming of polycarbonate/carbon nanotube based nanocomposites with supercritical carbon dioxide and their EMI shielding performances. Polymer 59(117), 123 (2015) L. Monnereau, L. Urbanczyk, J.-M. Thomassin, T. Pardoen, C. Bailly, I. Huynen, C. Jerome, C. Detrembleur, “Gradient foaming of polycarbonate/carbon nanotube based nanocomposites with supercritical carbon dioxide and their EMI shielding performances. Polymer 59(117), 123 (2015)
34.
go back to reference A.N. Saboor, H.M. Khan, K. Cheema, A.Shafqat Yaqoob, “Effect of polyaniline on the dielectric and EMI shielding behaviors of styrene acrylonitrile”. J. Mater. Sci. 27, 9634–9641 (2016) A.N. Saboor, H.M. Khan, K. Cheema, A.Shafqat Yaqoob, “Effect of polyaniline on the dielectric and EMI shielding behaviors of styrene acrylonitrile”. J. Mater. Sci. 27, 9634–9641 (2016)
35.
go back to reference N.C. Das, D. Khastgir, T.K. Chaki, A. Chakraborty, “Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites. Compos. Part A 31, 1069–1081 (2000)CrossRef N.C. Das, D. Khastgir, T.K. Chaki, A. Chakraborty, “Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites. Compos. Part A 31, 1069–1081 (2000)CrossRef
36.
go back to reference Q. J. Krueger, and J. A. King, “Synergistic effects of carbon fillers on shielding effectiveness in conductive nylon 6,6- and polycarbonate-based resins, Adv. Polym. Tech. 22(2), 96–111 (2003).CrossRef Q. J. Krueger, and J. A. King, “Synergistic effects of carbon fillers on shielding effectiveness in conductive nylon 6,6- and polycarbonate-based resins, Adv. Polym. Tech. 22(2), 96–111 (2003).CrossRef
37.
go back to reference H. Liu, J. Li, L. Wang, “Electroless nickel plating on APTHS modified wood veneer for EMI shielding”. Appl. Surf. Sci. 257(4), 1325–1330 (2010)CrossRef H. Liu, J. Li, L. Wang, “Electroless nickel plating on APTHS modified wood veneer for EMI shielding”. Appl. Surf. Sci. 257(4), 1325–1330 (2010)CrossRef
38.
go back to reference B. Yuan, L. Yu, L. Sheng, K. An, X. Zhao, “Comparison of electromagnetic interference shielding properties between single-wall carbon nanotube and graphene sheet/polyaniline composites. J. Phys. D 45, 235108 (2012)CrossRef B. Yuan, L. Yu, L. Sheng, K. An, X. Zhao, “Comparison of electromagnetic interference shielding properties between single-wall carbon nanotube and graphene sheet/polyaniline composites. J. Phys. D 45, 235108 (2012)CrossRef
39.
go back to reference H.M. Kim, K. Kim, C.Y. Lee, J. Joo, S.J. Cho, H.S. Yoon, D.A. Pejaković, J.W. Yoo, A.J. Epstein, “Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst”. Appl. Phys. Lett. 84(4), 589–591 (2004)CrossRef H.M. Kim, K. Kim, C.Y. Lee, J. Joo, S.J. Cho, H.S. Yoon, D.A. Pejaković, J.W. Yoo, A.J. Epstein, “Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst”. Appl. Phys. Lett. 84(4), 589–591 (2004)CrossRef
40.
go back to reference X. Huang, B. Dai, Y. Ren, J. Xu, C. Zhao, “Controllable synthesis and electromagnetic interference shielding properties of magnetic CoNi alloy nanoparticles coated on biocarbon nanofibers”. J. Mater. Sci. 26, 2584–2588 (2015) X. Huang, B. Dai, Y. Ren, J. Xu, C. Zhao, “Controllable synthesis and electromagnetic interference shielding properties of magnetic CoNi alloy nanoparticles coated on biocarbon nanofibers”. J. Mater. Sci. 26, 2584–2588 (2015)
41.
go back to reference B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, “Lightweight, multifunctional polyetherimide/graphene@ Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. & Interfaces 5(21), 11383–11391 (2013)CrossRef B. Shen, W. Zhai, M. Tao, J. Ling, W. Zheng, “Lightweight, multifunctional polyetherimide/graphene@ Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. & Interfaces 5(21), 11383–11391 (2013)CrossRef
42.
go back to reference J. Chen, J. Wu, H. Ge, D. Zhao, C. Liu, X. Hong, “Reduced graphene oxide deposited carbon fiber reinforced polymer composites for electromagnetic interference shielding. Compos. Part A 82, 141–150 (2016)CrossRef J. Chen, J. Wu, H. Ge, D. Zhao, C. Liu, X. Hong, “Reduced graphene oxide deposited carbon fiber reinforced polymer composites for electromagnetic interference shielding. Compos. Part A 82, 141–150 (2016)CrossRef
43.
go back to reference J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, “Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47, 922–925 (2009)CrossRef J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, “Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47, 922–925 (2009)CrossRef
44.
go back to reference K. Singh, A. Ohlan, V.H. Pham, R. Balasubramaniyan, S. Varshney, J. Jang, S.H. Hur, W.M. Choi, M. Kumar, S.K. Dhawan, B.S. Kong, J.S. Chung, Nanoscale 5, 2411 (2013)CrossRef K. Singh, A. Ohlan, V.H. Pham, R. Balasubramaniyan, S. Varshney, J. Jang, S.H. Hur, W.M. Choi, M. Kumar, S.K. Dhawan, B.S. Kong, J.S. Chung, Nanoscale 5, 2411 (2013)CrossRef
45.
go back to reference H. Wang, K. Teng, C. Chen, X. Li, Z. Xu, L. Chen, H. Fu, L. Kuang, M. Ma, L. Zhao, “Conductivity and electromagnetic interference shielding of graphene-based architectures using MWCNTs as free radical scavenger in gamma-irradiation”. Mater. Lett. 186, 78–81 (2017)CrossRef H. Wang, K. Teng, C. Chen, X. Li, Z. Xu, L. Chen, H. Fu, L. Kuang, M. Ma, L. Zhao, “Conductivity and electromagnetic interference shielding of graphene-based architectures using MWCNTs as free radical scavenger in gamma-irradiation”. Mater. Lett. 186, 78–81 (2017)CrossRef
Metadata
Title
Electromagnetic interference shielding performance and electromagnetic properties of wood-plastic nanocomposite with graphene nanoplatelets
Authors
Ibrahim Karteri
Mahmut Altun
Mahit Gunes
Publication date
21-01-2017
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 9/2017
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-6364-1

Other articles of this Issue 9/2017

Journal of Materials Science: Materials in Electronics 9/2017 Go to the issue