Skip to main content
Top

2019 | OriginalPaper | Chapter

21. Electromagnetic Interference Shielding Using MXenes and Their Composites

Authors : Chong Min Koo, Faisal Shahzad, Aamir Iqbal, Hyerim Kim

Published in: 2D Metal Carbides and Nitrides (MXenes)

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The problems associated with electromagnetic interference (EMI) have grown up rapidly due to the large usage of electronic gadgets and telecommunication devices. Thus, it is extremely important to understand the EMI shielding mechanisms and develop such materials that can mitigate the harmful effects of EMI arising due to advancement of telecommunication and electronics industry. This chapter throws some light on the latest addition to EMI shielding materials, in particular, the recently discovered two-dimensional transition metal carbides or nitrides (MXenes) and their composites. First, a brief overview of EMI shielding mechanisms is presented followed by discussion of MXene-based EMI shielding materials. The literature reports are summarized in a way to give the readers an idea about the utility and progress of MXenes and their polymer composites in EMI shielding. Since the microwave absorption (MWA) properties are as important as EMI shielding, the discussion on MXene-based materials as microwave absorbers is presented in detail. Further to the end, future perspectives of MXene as EMI shielding and MWA are discussed along with suggestions to enhance the performance by controlling the surface characteristics, architectural control, physical properties, and quality of MXenes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chung, D. (2001). Electromagnetic interference shielding effectiveness of carbon materials. Carbon, 39(2), 279–285.CrossRef Chung, D. (2001). Electromagnetic interference shielding effectiveness of carbon materials. Carbon, 39(2), 279–285.CrossRef
2.
go back to reference Liang, J., Wang, Y., Huang, Y., Ma, Y., Liu, Z., Cai, J., Zhang, C., Gao, H., & Chen, Y. (2009). Electromagnetic interference shielding of graphene/epoxy composites. Carbon, 47(3), 922–925.CrossRef Liang, J., Wang, Y., Huang, Y., Ma, Y., Liu, Z., Cai, J., Zhang, C., Gao, H., & Chen, Y. (2009). Electromagnetic interference shielding of graphene/epoxy composites. Carbon, 47(3), 922–925.CrossRef
3.
go back to reference Al-Saleh, M. H., & Sundararaj, U. (2009). Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon, 47(7), 1738–1746.CrossRef Al-Saleh, M. H., & Sundararaj, U. (2009). Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon, 47(7), 1738–1746.CrossRef
4.
go back to reference Chen, Z., Xu, C., Ma, C., Ren, W., & Cheng, H. M. (2013). Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Advanced Materials, 25(9), 1296–1300.CrossRef Chen, Z., Xu, C., Ma, C., Ren, W., & Cheng, H. M. (2013). Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Advanced Materials, 25(9), 1296–1300.CrossRef
5.
go back to reference Lee, S. H., Yu, S., Shahzad, F., Hong, J. P., Kim, W. N., Park, C., Hong, S. M., & Koo, C. M. (2017). Highly anisotropic Cu oblate ellipsoids incorporated polymer composites with excellent performance for broadband electromagnetic interference shielding. Composites Science and Technology, 144, 57–62.CrossRef Lee, S. H., Yu, S., Shahzad, F., Hong, J. P., Kim, W. N., Park, C., Hong, S. M., & Koo, C. M. (2017). Highly anisotropic Cu oblate ellipsoids incorporated polymer composites with excellent performance for broadband electromagnetic interference shielding. Composites Science and Technology, 144, 57–62.CrossRef
6.
go back to reference Shahzad, F., Alhabeb, M., Hatter, C. B., Anasori, B., Hong, S. M., Koo, C. M., & Gogotsi, Y. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353(6304), 1137–1140.CrossRef Shahzad, F., Alhabeb, M., Hatter, C. B., Anasori, B., Hong, S. M., Koo, C. M., & Gogotsi, Y. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353(6304), 1137–1140.CrossRef
7.
go back to reference Repacholi, M. H. (1998). Low-level exposure to radiofrequency electromagnetic fields: Health effects and research needs. Bioelectromagnetics, 19(1), 1–19.CrossRef Repacholi, M. H. (1998). Low-level exposure to radiofrequency electromagnetic fields: Health effects and research needs. Bioelectromagnetics, 19(1), 1–19.CrossRef
8.
go back to reference Shahzad, F., Zaidi, S. A., & Koo, C. M. (2017). Synthesis of multifunctional electrically tunable fluorine-doped reduced graphene oxide at low temperatures. ACS Applied Materials & Interfaces, 9(28), 24179–24189.CrossRef Shahzad, F., Zaidi, S. A., & Koo, C. M. (2017). Synthesis of multifunctional electrically tunable fluorine-doped reduced graphene oxide at low temperatures. ACS Applied Materials & Interfaces, 9(28), 24179–24189.CrossRef
9.
go back to reference Lee, S. H., Yu, S., Shahzad, F., Kim, W. N., Park, C., Hong, S. M., & Koo, C. M. (2017). Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation. Nanoscale, 9(36), 13432–13440.CrossRef Lee, S. H., Yu, S., Shahzad, F., Kim, W. N., Park, C., Hong, S. M., & Koo, C. M. (2017). Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation. Nanoscale, 9(36), 13432–13440.CrossRef
10.
go back to reference Kaiser, K. L. (2005). Electromagnetic shielding. Boca Raton: Crc Press. Kaiser, K. L. (2005). Electromagnetic shielding. Boca Raton: Crc Press.
11.
go back to reference Ott, H. W. (2011). Electromagnetic compatibility engineering. New York: Wiley. Ott, H. W. (2011). Electromagnetic compatibility engineering. New York: Wiley.
12.
go back to reference Shahzad, F., Kumar, P., Yu, S., Lee, S., Kim, Y.-H., Hong, S. M., & Koo, C. M. (2015). Sulfur-doped graphene laminates for EMI shielding applications. Journal of Materials Chemistry C, 3(38), 9802–9810.CrossRef Shahzad, F., Kumar, P., Yu, S., Lee, S., Kim, Y.-H., Hong, S. M., & Koo, C. M. (2015). Sulfur-doped graphene laminates for EMI shielding applications. Journal of Materials Chemistry C, 3(38), 9802–9810.CrossRef
13.
go back to reference Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., & Barsoum, M. W. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23(37), 4248–4253.CrossRef Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., & Barsoum, M. W. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23(37), 4248–4253.CrossRef
14.
go back to reference Naguib, M., Mochalin, V. N., Barsoum, M. W., & Gogotsi, Y. (2014). 25th anniversary article: MXenes: A new family of two-dimensional materials. Advanced Materials, 26(7), 992–1005.CrossRef Naguib, M., Mochalin, V. N., Barsoum, M. W., & Gogotsi, Y. (2014). 25th anniversary article: MXenes: A new family of two-dimensional materials. Advanced Materials, 26(7), 992–1005.CrossRef
15.
go back to reference Sun, R., Zhang, H. B., Liu, J., Xie, X., Yang, R., Li, Y., Hong, S., & Yu, Z. Z. (2017). Highly conductive transition metal carbide/carbonitride (MXene)@ polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Advanced Functional Materials, 27(45), 1702807.CrossRef Sun, R., Zhang, H. B., Liu, J., Xie, X., Yang, R., Li, Y., Hong, S., & Yu, Z. Z. (2017). Highly conductive transition metal carbide/carbonitride (MXene)@ polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Advanced Functional Materials, 27(45), 1702807.CrossRef
16.
go back to reference Han, M., Yin, X., Wu, H., Hou, Z., Song, C., Li, X., Zhang, L., & Cheng, L. (2016). Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Applied Materials & Interfaces, 8(32), 21011–21019.CrossRef Han, M., Yin, X., Wu, H., Hou, Z., Song, C., Li, X., Zhang, L., & Cheng, L. (2016). Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band. ACS Applied Materials & Interfaces, 8(32), 21011–21019.CrossRef
17.
go back to reference Liu, J., Zhang, H. B., Sun, R., Liu, Y., Liu, Z., Zhou, A., & Yu, Z. Z. (2017). Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Advanced Materials, 29(38), 1702367.CrossRef Liu, J., Zhang, H. B., Sun, R., Liu, Y., Liu, Z., Zhou, A., & Yu, Z. Z. (2017). Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Advanced Materials, 29(38), 1702367.CrossRef
18.
go back to reference Cao, W.-T., Chen, F.-F., Zhu, Y.-J., Zhang, Y.-G., Jiang, Y.-Y., Ma, M.-G., & Chen, F. (2018). Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with Nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano, 12(5), 4583–4593.CrossRef Cao, W.-T., Chen, F.-F., Zhu, Y.-J., Zhang, Y.-G., Jiang, Y.-Y., Ma, M.-G., & Chen, F. (2018). Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with Nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano, 12(5), 4583–4593.CrossRef
19.
go back to reference Liu, X., Wu, J., He, J., & Zhang, L. (2017). Electromagnetic interference shielding effectiveness of titanium carbide sheets. Materials Letters, 205, 261–263.CrossRef Liu, X., Wu, J., He, J., & Zhang, L. (2017). Electromagnetic interference shielding effectiveness of titanium carbide sheets. Materials Letters, 205, 261–263.CrossRef
20.
go back to reference Pawar, S. P., Bhingardive, V., Jadhav, A., & Bose, S. (2015). An efficient strategy to develop microwave shielding materials with enhanced attenuation constant. RSC Advances, 5(109), 89461–89471.CrossRef Pawar, S. P., Bhingardive, V., Jadhav, A., & Bose, S. (2015). An efficient strategy to develop microwave shielding materials with enhanced attenuation constant. RSC Advances, 5(109), 89461–89471.CrossRef
21.
go back to reference González, M., Pozuelo, J., & Baselga, J. (2018). Electromagnetic shielding materials in GHz range. The Chemical Record, 18, 1000.CrossRef González, M., Pozuelo, J., & Baselga, J. (2018). Electromagnetic shielding materials in GHz range. The Chemical Record, 18, 1000.CrossRef
22.
go back to reference Li, M., Han, M., Zhou, J., Deng, Q., Zhou, X., Xue, J., Du, S., Yin, X., & Huang, Q. (2018). Novel scale-like structures of Graphite/TiC/Ti3C2 hybrids for electromagnetic absorption. Advanced Electronic Materials, 4(5), 1700617.CrossRef Li, M., Han, M., Zhou, J., Deng, Q., Zhou, X., Xue, J., Du, S., Yin, X., & Huang, Q. (2018). Novel scale-like structures of Graphite/TiC/Ti3C2 hybrids for electromagnetic absorption. Advanced Electronic Materials, 4(5), 1700617.CrossRef
23.
go back to reference Luo, H., Feng, W., Liao, C., Deng, L., Liu, S., Zhang, H., & Xiao, P. (2018). Peaked dielectric responses in Ti3C2 MXene nanosheets enabled composites with efficient microwave absorption. Journal of Applied Physics, 123(10), 104103.CrossRef Luo, H., Feng, W., Liao, C., Deng, L., Liu, S., Zhang, H., & Xiao, P. (2018). Peaked dielectric responses in Ti3C2 MXene nanosheets enabled composites with efficient microwave absorption. Journal of Applied Physics, 123(10), 104103.CrossRef
24.
go back to reference Qing, Y., Zhou, W., Luo, F., & Zhu, D. (2016). Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceramics International, 42(14), 16412–16416.CrossRef Qing, Y., Zhou, W., Luo, F., & Zhu, D. (2016). Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceramics International, 42(14), 16412–16416.CrossRef
25.
go back to reference Han, M., Yin, X., Li, X., Anasori, B., Zhang, L., Cheng, L., & Gogotsi, Y. (2017). Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Applied Materials & Interfaces, 9(23), 20038–20045.CrossRef Han, M., Yin, X., Li, X., Anasori, B., Zhang, L., Cheng, L., & Gogotsi, Y. (2017). Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Applied Materials & Interfaces, 9(23), 20038–20045.CrossRef
26.
go back to reference Li, X., Yin, X., Han, M., Song, C., Sun, X., Xu, H., Cheng, L., & Zhang, L. (2017). A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene. Journal of Materials Chemistry C, 5(30), 7621–7628.CrossRef Li, X., Yin, X., Han, M., Song, C., Sun, X., Xu, H., Cheng, L., & Zhang, L. (2017). A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene. Journal of Materials Chemistry C, 5(30), 7621–7628.CrossRef
27.
go back to reference Li, X., Yin, X., Han, M., Song, C., Xu, H., Hou, Z., Zhang, L., & Cheng, L. (2017). Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. Journal of Materials Chemistry C, 5(16), 4068–4074.CrossRef Li, X., Yin, X., Han, M., Song, C., Xu, H., Hou, Z., Zhang, L., & Cheng, L. (2017). Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. Journal of Materials Chemistry C, 5(16), 4068–4074.CrossRef
28.
go back to reference Qing, Y., Nan, H., Luo, F., & Zhou, W. (2017). Nitrogen-doped graphene and titanium carbide nanosheet synergistically reinforced epoxy composites as high-performance microwave absorbers. RSC Advances, 7(44), 27755–27761.CrossRef Qing, Y., Nan, H., Luo, F., & Zhou, W. (2017). Nitrogen-doped graphene and titanium carbide nanosheet synergistically reinforced epoxy composites as high-performance microwave absorbers. RSC Advances, 7(44), 27755–27761.CrossRef
29.
go back to reference Tong, Y., He, M., Zhou, Y., Zhong, X., Fan, L., Huang, T., Liao, Q., & Wang, Y. (2018). Hybridizing polypyrrole chains with laminated and two-dimensional Ti3C2Tx toward high-performance electromagnetic wave absorption. Applied Surface Science, 434, 283–293.CrossRef Tong, Y., He, M., Zhou, Y., Zhong, X., Fan, L., Huang, T., Liao, Q., & Wang, Y. (2018). Hybridizing polypyrrole chains with laminated and two-dimensional Ti3C2Tx toward high-performance electromagnetic wave absorption. Applied Surface Science, 434, 283–293.CrossRef
30.
go back to reference Qian, Y., Wei, H., Dong, J., Du, Y., Fang, X., Zheng, W., Sun, Y., & Jiang, Z. (2017). Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption. Ceramics International, 43(14), 10757–10762.CrossRef Qian, Y., Wei, H., Dong, J., Du, Y., Fang, X., Zheng, W., Sun, Y., & Jiang, Z. (2017). Fabrication of urchin-like ZnO-MXene nanocomposites for high-performance electromagnetic absorption. Ceramics International, 43(14), 10757–10762.CrossRef
31.
go back to reference Yang, H., Dai, J., Liu, X., Lin, Y., Wang, J., Wang, L., & Wang, F. (2017). Layered PVB/Ba3Co2Fe24O41/Ti3C2 Mxene composite: Enhanced electromagnetic wave absorption properties with high impedance match in a wide frequency range. Materials Chemistry and Physics, 200, 179–186.CrossRef Yang, H., Dai, J., Liu, X., Lin, Y., Wang, J., Wang, L., & Wang, F. (2017). Layered PVB/Ba3Co2Fe24O41/Ti3C2 Mxene composite: Enhanced electromagnetic wave absorption properties with high impedance match in a wide frequency range. Materials Chemistry and Physics, 200, 179–186.CrossRef
32.
go back to reference Li, Y., Zhou, X., Wang, J., Deng, Q., Li, M., Du, S., Han, Y.-H., Lee, J., & Huang, Q. (2017). Facile preparation of in situ coated Ti3C2Tx/Ni0.5Zn0.5Fe2O4 composites and their electromagnetic performance. RSC Advances, 7(40), 24698–24708.CrossRef Li, Y., Zhou, X., Wang, J., Deng, Q., Li, M., Du, S., Han, Y.-H., Lee, J., & Huang, Q. (2017). Facile preparation of in situ coated Ti3C2Tx/Ni0.5Zn0.5Fe2O4 composites and their electromagnetic performance. RSC Advances, 7(40), 24698–24708.CrossRef
Metadata
Title
Electromagnetic Interference Shielding Using MXenes and Their Composites
Authors
Chong Min Koo
Faisal Shahzad
Aamir Iqbal
Hyerim Kim
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-19026-2_21