Skip to main content
Top

2019 | OriginalPaper | Chapter

20. MXene Materials as Electrodes for Lithium-Sulfur Batteries

Authors : Xiao Liang, Linda F. Nazar

Published in: 2D Metal Carbides and Nitrides (MXenes)

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Exploration of new electrochemistries that go “beyond lithium-ion” to boost energy density and reduce cost is rapidly gaining momentum. In this pursuit, lithium-sulfur (Li-S) batteries that couple sulfur-positive electrodes (or “cathodes”) with lithium-negative electrodes (or “anodes”) are considered particularly promising candidates. The Li-S battery has received enormous attention in the past decade, due to the high theoretical specific energy (Wh kg−1) and earth abundance of sulfur, which is coupled with a high-energy density Li metal anode in the cell. Instead of intercalation chemistry, these batteries rely on conversion chemistry, which yields a high theoretical capacity. MXenes can provide a vital role. MXenes have been used in Li-S batteries. Delaminated MXenes are capable of high electronic conductivity and exhibit rich surface properties, which synergistically improves the electron transport properties of the sulfur electrode and provides chemical interactions with lithium polysulfides. Another advantageous aspect is MXenes denser structure compared to most “fluffy” carbonaceous materials, which benefits the volumetric energy density of the battery. This chapter provides a brief overview of the recent development of MXenes for Li-S batteries, from material aspects on tuning the physical and electrochemical properties of the sulfur cathode to their performance in prototype cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Choi, N. S., Chen, Z., Freunberger, S. A., Ji, X., Sun, Y. K., Amine, K., Yushin, G., Nazar, L. F., Cho, J., & Bruce, P. G. (2012). Challenges facing lithium batteries and electrical double-layer capacitors. Angewandte Chemie, International Edition, 51, 9994.CrossRef Choi, N. S., Chen, Z., Freunberger, S. A., Ji, X., Sun, Y. K., Amine, K., Yushin, G., Nazar, L. F., Cho, J., & Bruce, P. G. (2012). Challenges facing lithium batteries and electrical double-layer capacitors. Angewandte Chemie, International Edition, 51, 9994.CrossRef
2.
go back to reference Yin, Y. X., Xin, S., Guo, Y. G., & Wan, L. J. (2013). Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angewandte Chemie, International Edition, 52, 13186–13200.CrossRef Yin, Y. X., Xin, S., Guo, Y. G., & Wan, L. J. (2013). Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angewandte Chemie, International Edition, 52, 13186–13200.CrossRef
3.
go back to reference Yang, Y., Zheng, G., & Cui, Y. (2013). Nanostructured sulfur cathodes. Chemical Society Reviews, 42, 3018–3032.CrossRef Yang, Y., Zheng, G., & Cui, Y. (2013). Nanostructured sulfur cathodes. Chemical Society Reviews, 42, 3018–3032.CrossRef
4.
go back to reference Fang, R., Zhao, S., Sun, Z., Wang, D.-W., Cheng, H.-M., & Li, F. (2017). More reliable lithium-sulfur batteries: Status, solutions and prospects. Advanced Materials, 29, 1606823.CrossRef Fang, R., Zhao, S., Sun, Z., Wang, D.-W., Cheng, H.-M., & Li, F. (2017). More reliable lithium-sulfur batteries: Status, solutions and prospects. Advanced Materials, 29, 1606823.CrossRef
5.
go back to reference Ji, X., Lee, K. T., & Nazar, L. F. (2009). A highly ordered nanostructured carbon–sulphur cathode for lithium–sulfur batteries. Nature Materials, 8, 500–506.CrossRef Ji, X., Lee, K. T., & Nazar, L. F. (2009). A highly ordered nanostructured carbon–sulphur cathode for lithium–sulfur batteries. Nature Materials, 8, 500–506.CrossRef
6.
go back to reference Pang, Q., Liang, X., Kwok, C. Y., & Nazar, L. (2016). Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy, 1, 16132.CrossRef Pang, Q., Liang, X., Kwok, C. Y., & Nazar, L. (2016). Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy, 1, 16132.CrossRef
7.
go back to reference Mikhaylik, Y. V., & Akridge, J. R. (2004). Polysulfide shuttle study in the Li/S battery system. Journal of the Electrochemical Society, 151, A1969–A1976.CrossRef Mikhaylik, Y. V., & Akridge, J. R. (2004). Polysulfide shuttle study in the Li/S battery system. Journal of the Electrochemical Society, 151, A1969–A1976.CrossRef
8.
go back to reference Eroglu, D., Zavadil, K. R., & Gallagher, K. G. (2015). Critical link between materials chemistry and cell-level design for high energy density and low cost lithium- transportation battery. Journal of the Electrochemical Society, 162, A982–A990.CrossRef Eroglu, D., Zavadil, K. R., & Gallagher, K. G. (2015). Critical link between materials chemistry and cell-level design for high energy density and low cost lithium- transportation battery. Journal of the Electrochemical Society, 162, A982–A990.CrossRef
9.
go back to reference Pope, M. A., & Aksay, R. A. (2015). Structural design of cathodes for Li-S batteries. Advanced Energy Materials, 5, 201500124.CrossRef Pope, M. A., & Aksay, R. A. (2015). Structural design of cathodes for Li-S batteries. Advanced Energy Materials, 5, 201500124.CrossRef
10.
go back to reference Xin, S., et al. (2012). Small molecules promise better lithium – Sulfur batteries. Journal of the American Chemical Society, 134, 18510–18513.CrossRef Xin, S., et al. (2012). Small molecules promise better lithium – Sulfur batteries. Journal of the American Chemical Society, 134, 18510–18513.CrossRef
11.
go back to reference Li, Z., et al. (2014). A highly ordered meso@ microporous carbon-supported @smaller sulfur core–shell structured cathode for Li–S batteries. ACS Nano, 8, 9295–9303.CrossRef Li, Z., et al. (2014). A highly ordered meso@ microporous carbon-supported @smaller sulfur core–shell structured cathode for Li–S batteries. ACS Nano, 8, 9295–9303.CrossRef
12.
go back to reference Jayaprakash, N., Shen, J., Moganty, S. S., Corona, A., & Archer, L. A. (2011). Porous hollow carbon@sulfur composites for high power lithium–sulfur batteries. Angewandte Chemie, International Edition, 123, 6026–6030.CrossRef Jayaprakash, N., Shen, J., Moganty, S. S., Corona, A., & Archer, L. A. (2011). Porous hollow carbon@sulfur composites for high power lithium–sulfur batteries. Angewandte Chemie, International Edition, 123, 6026–6030.CrossRef
13.
go back to reference Song, M. K., Zhang, Y., & Cairns, E. J. (2013). A long-life, high-rate lithium/cell: A multifaceted approach to enhancing cell performance. Nano Letters, 13, 5891–5899.CrossRef Song, M. K., Zhang, Y., & Cairns, E. J. (2013). A long-life, high-rate lithium/cell: A multifaceted approach to enhancing cell performance. Nano Letters, 13, 5891–5899.CrossRef
14.
go back to reference Song, J., et al. (2014). Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Advanced Functional Materials, 24, 1243–1250.CrossRef Song, J., et al. (2014). Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Advanced Functional Materials, 24, 1243–1250.CrossRef
15.
go back to reference Wei Seh, Z., et al. (2013). Sulfur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–Sulphur batteries. Nature Communications, 4, 1331.CrossRef Wei Seh, Z., et al. (2013). Sulfur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–Sulphur batteries. Nature Communications, 4, 1331.CrossRef
16.
go back to reference Liang, X., Hart, C., Pang, Q., Garsuch, A., Weiss, T., & Nazar, L. F. (2015). A highly efficient polysulphide mediator for lithium–Sulphur batteries. Nature Communications, 6, 5682.CrossRef Liang, X., Hart, C., Pang, Q., Garsuch, A., Weiss, T., & Nazar, L. F. (2015). A highly efficient polysulphide mediator for lithium–Sulphur batteries. Nature Communications, 6, 5682.CrossRef
17.
go back to reference Seh, Z. W., et al. (2014). Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nature Communications, 5, 5017.CrossRef Seh, Z. W., et al. (2014). Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nature Communications, 5, 5017.CrossRef
18.
go back to reference Pang, Q., Kundu, D., & Nazar, L. F. (2016). A graphene-like metallic cathode host for long-life and high-loading lithium-sulfur batteries. Materials Horizons, 3, 130–136.CrossRef Pang, Q., Kundu, D., & Nazar, L. F. (2016). A graphene-like metallic cathode host for long-life and high-loading lithium-sulfur batteries. Materials Horizons, 3, 130–136.CrossRef
19.
go back to reference Zhou, J., et al. (2014). Rational design of a metal–organic framework host for sulfur storage in fast, long-cycle Li–S batteries. Energy & Environmental Science, 7, 2715–2724.CrossRef Zhou, J., et al. (2014). Rational design of a metal–organic framework host for sulfur storage in fast, long-cycle Li–S batteries. Energy & Environmental Science, 7, 2715–2724.CrossRef
20.
go back to reference Anasori, B., Lukatskaya, M. R., & Gogotsi, Y. (2016). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2, 16098.CrossRef Anasori, B., Lukatskaya, M. R., & Gogotsi, Y. (2016). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2, 16098.CrossRef
21.
go back to reference Naguib, M., et al. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23, 4248–4253. Naguib, M., et al. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23, 4248–4253.
22.
go back to reference Naguib, M., Mochalin, V. N., Barsoum, M. W., & Gogotsi, Y. (2014). 25th Anniversary Article. MXenes: A new family of two-dimensional materials. Advanced Materials, 26, 992–1005. Naguib, M., Mochalin, V. N., Barsoum, M. W., & Gogotsi, Y. (2014). 25th Anniversary Article. MXenes: A new family of two-dimensional materials. Advanced Materials, 26, 992–1005.
23.
go back to reference Barsoum, M. W. (2013). MAX Phases: Properties of machinable ternary carbides and nitrides. Weinheim: Wiley. Barsoum, M. W. (2013). MAX Phases: Properties of machinable ternary carbides and nitrides. Weinheim: Wiley.
24.
go back to reference Mashtalir, O., Naguib, M., Mochalin, V. N., Agnese, Y. D., Heon, M., Barsoum, M. W., & Gogotsi, Y. (2013). Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 4, 1716.CrossRef Mashtalir, O., Naguib, M., Mochalin, V. N., Agnese, Y. D., Heon, M., Barsoum, M. W., & Gogotsi, Y. (2013). Intercalation and delamination of layered carbides and carbonitrides. Nature Communications, 4, 1716.CrossRef
25.
go back to reference Ling, Z., et al. (2014). Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences of the United States of America, 111, 16676–16681.CrossRef Ling, Z., et al. (2014). Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences of the United States of America, 111, 16676–16681.CrossRef
26.
go back to reference Barsoum, M. W., & Radovic, M. (2011). Elastic and mechanical properties of the MAX phases. Annual Review of Materials Research, 41, 195–227.CrossRef Barsoum, M. W., & Radovic, M. (2011). Elastic and mechanical properties of the MAX phases. Annual Review of Materials Research, 41, 195–227.CrossRef
27.
go back to reference Kurtoglu, M., Naguib, M., Gogotsi, Y., & Barsoum, M. W. (2012). First principles study of two-dimensional early transition metal carbides. MRS Communications, 2, 133–137.CrossRef Kurtoglu, M., Naguib, M., Gogotsi, Y., & Barsoum, M. W. (2012). First principles study of two-dimensional early transition metal carbides. MRS Communications, 2, 133–137.CrossRef
28.
go back to reference Borysiuk, V. N., Mochalin, V. N., & Gogotsi, Y. (2015). Molecular dynamics study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn (MXenes). Nanotechnology, 26, 265705. Borysiuk, V. N., Mochalin, V. N., & Gogotsi, Y. (2015). Molecular dynamics study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn (MXenes). Nanotechnology, 26, 265705.
29.
go back to reference Tang, Q., Zhou, Z., & Shen, P. (2012). Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. Journal of the American Chemical Society, 134, 16909–16916.CrossRef Tang, Q., Zhou, Z., & Shen, P. (2012). Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. Journal of the American Chemical Society, 134, 16909–16916.CrossRef
30.
go back to reference Weng, H., et al. (2015). Large-gap two-dimensional topological insulator in oxygen functionalized MXene. Physical Review B, 92, 075436.CrossRef Weng, H., et al. (2015). Large-gap two-dimensional topological insulator in oxygen functionalized MXene. Physical Review B, 92, 075436.CrossRef
31.
go back to reference Shahzad, F., et al. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353, 1137–1140. Shahzad, F., et al. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353, 1137–1140.
32.
go back to reference Liang, X., Rangom, Y., Kwok, C. Y., Pang, Q., & Nazar, L. F. (2017). Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Advanced Materials, 29, 1603040.CrossRef Liang, X., Rangom, Y., Kwok, C. Y., Pang, Q., & Nazar, L. F. (2017). Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Advanced Materials, 29, 1603040.CrossRef
33.
go back to reference Rao, D., Zhang, L., Wang, Y., Meng, Z., Qian, X., Liu, J., Shen, X., Qiao, G., & Lu, R. (2017). Mechanism on the improved performance of lithium sulfur batteries with MXene-based additives. Journal of Physical Chemistry C, 121, 11047–11054.CrossRef Rao, D., Zhang, L., Wang, Y., Meng, Z., Qian, X., Liu, J., Shen, X., Qiao, G., & Lu, R. (2017). Mechanism on the improved performance of lithium sulfur batteries with MXene-based additives. Journal of Physical Chemistry C, 121, 11047–11054.CrossRef
34.
go back to reference Zhao, Y., & Zhao, J. (2017). Functional group-dependent anchoring effect of titanium carbide-based MXenes for lithium- batteries: A computational study. Applied Surface Science, 412, 591–598.CrossRef Zhao, Y., & Zhao, J. (2017). Functional group-dependent anchoring effect of titanium carbide-based MXenes for lithium- batteries: A computational study. Applied Surface Science, 412, 591–598.CrossRef
35.
go back to reference Sim, E. S., & Chung, Y. C. (2018). Non-uniformly functionalized titanium carbide-based MXenes as an anchoring material for Li-S batteries: A first-principles calculation. Applied Surface Science, 435, 210–215.CrossRef Sim, E. S., & Chung, Y. C. (2018). Non-uniformly functionalized titanium carbide-based MXenes as an anchoring material for Li-S batteries: A first-principles calculation. Applied Surface Science, 435, 210–215.CrossRef
36.
go back to reference Sim, E. S., Yi, G. S., Je, M., Lee, Y., & Chung, Y. C. (2017). Understanding the anchoring behavior of titanium carbide-based MXenes depending on the functional group in Li-S batteries: A density functional theory study. Journal of Power Sources, 342, 64–69.CrossRef Sim, E. S., Yi, G. S., Je, M., Lee, Y., & Chung, Y. C. (2017). Understanding the anchoring behavior of titanium carbide-based MXenes depending on the functional group in Li-S batteries: A density functional theory study. Journal of Power Sources, 342, 64–69.CrossRef
37.
go back to reference Liang, X., Garsuch, A., & Nazar, L. F. (2015). Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angewandte Chemie, International Edition, 54, 3907–3911.CrossRef Liang, X., Garsuch, A., & Nazar, L. F. (2015). Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angewandte Chemie, International Edition, 54, 3907–3911.CrossRef
38.
go back to reference Zheng, J., et al. (2014). Lewis acid–base interactions between polysulfides and metal organic framework in lithium-sulfur batteries. Nano Letters, 14, 2345–2352.CrossRef Zheng, J., et al. (2014). Lewis acid–base interactions between polysulfides and metal organic framework in lithium-sulfur batteries. Nano Letters, 14, 2345–2352.CrossRef
39.
go back to reference Zhao, X., et al. (2015). Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 3, 7870–7876.CrossRef Zhao, X., et al. (2015). Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 3, 7870–7876.CrossRef
40.
go back to reference Wang, H. W., Naguib, M., Page, K., Wesolowski, D. J., & Gogotsi, Y. (2016). Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chemistry of Materials, 28, 349–359. Wang, H. W., Naguib, M., Page, K., Wesolowski, D. J., & Gogotsi, Y. (2016). Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chemistry of Materials, 28, 349–359.
41.
go back to reference Bao, W., Su, D., Zhang, W., Guo, X., & Wang, G. (2016). 3D metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries. Advanced Functional Materials, 26, 8746–8756.CrossRef Bao, W., Su, D., Zhang, W., Guo, X., & Wang, G. (2016). 3D metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries. Advanced Functional Materials, 26, 8746–8756.CrossRef
42.
go back to reference Bao, W., Xie, X., Xu, J., Guo, X., Song, J., Wu, W., Su, D., & Wang, G. (2017). Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium–sulfur battery. Chemistry: A European Journal, 23, 12613–12619.CrossRef Bao, W., Xie, X., Xu, J., Guo, X., Song, J., Wu, W., Su, D., & Wang, G. (2017). Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium–sulfur battery. Chemistry: A European Journal, 23, 12613–12619.CrossRef
43.
go back to reference Shen, C., et al. (2018). Synthesis and electrochemical properties of two-dimensional RGO/Ti3C2Tx nanocomposites. Nanomaterials, 8, 80. Shen, C., et al. (2018). Synthesis and electrochemical properties of two-dimensional RGO/Ti3C2Tx nanocomposites. Nanomaterials, 8, 80.
44.
go back to reference Boota, M., et al. (2016). Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Advanced Materials, 28, 1517–1522.CrossRef Boota, M., et al. (2016). Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Advanced Materials, 28, 1517–1522.CrossRef
45.
go back to reference Peng, C., et al. (2016). Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity. ACS Applied Materials & Interfaces, 8, 6051–6060. Peng, C., et al. (2016). Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity. ACS Applied Materials & Interfaces, 8, 6051–6060.
46.
go back to reference Xu, J., Shim, J., Park, J.-H., & Lee, S. (2016). MXene electrode for the integration of WSe2 and MoS2 field effect transistors. Advanced Functional Materials, 26, 5328–5334. Xu, J., Shim, J., Park, J.-H., & Lee, S. (2016). MXene electrode for the integration of WSe2 and MoS2 field effect transistors. Advanced Functional Materials, 26, 5328–5334.
47.
go back to reference Ma, T. Y., Cao, J. L., Jaroniec, M., & Qiao, S. Z. (2015). Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angewandte Chemie, International Edition, 55, 1138–1142.CrossRef Ma, T. Y., Cao, J. L., Jaroniec, M., & Qiao, S. Z. (2015). Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angewandte Chemie, International Edition, 55, 1138–1142.CrossRef
48.
go back to reference Bao, W., Liu, L., Wang, C., Choi, S., Wang, D., & Wang, G. (2018). Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new host for lithium–sulfur batteries. Advanced Energy Materials, 8, 1702485.CrossRef Bao, W., Liu, L., Wang, C., Choi, S., Wang, D., & Wang, G. (2018). Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new host for lithium–sulfur batteries. Advanced Energy Materials, 8, 1702485.CrossRef
49.
go back to reference Su, Y. S., & Manthiram, A. (2012). Lithium–sulfur batteries with a microporous carbon paper as a bifunctional interlayer. Nature Communications, 3, 1166.CrossRef Su, Y. S., & Manthiram, A. (2012). Lithium–sulfur batteries with a microporous carbon paper as a bifunctional interlayer. Nature Communications, 3, 1166.CrossRef
50.
go back to reference Lin, C., et al. (2016). A few-layered Ti3C2 nanosheet/glass fiber composite separator as a lithium polysulfide reservoir for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 4, 5993–5998.CrossRef Lin, C., et al. (2016). A few-layered Ti3C2 nanosheet/glass fiber composite separator as a lithium polysulfide reservoir for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 4, 5993–5998.CrossRef
51.
go back to reference Song, J., et al. (2016). Immobilizing polysulfides with MXene-functionalized separators for stable lithium−sulfur batteries. ACS Applied Materials & Interfaces, 8, 29427–29433.CrossRef Song, J., et al. (2016). Immobilizing polysulfides with MXene-functionalized separators for stable lithium−sulfur batteries. ACS Applied Materials & Interfaces, 8, 29427–29433.CrossRef
52.
go back to reference Li, B., Zhang, D., Liu, Y., Yu, Y., Li, S., & Yang, S. (2017). Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes. Nano Energy, 39, 654–661.CrossRef Li, B., Zhang, D., Liu, Y., Yu, Y., Li, S., & Yang, S. (2017). Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes. Nano Energy, 39, 654–661.CrossRef
53.
go back to reference Liang, X., Pang, Q., Kochetkov, I. R., Sempere, M. S., Huang, H., Sun, X., & Nazar, L. F. (2017). A facile surface chemistry route to a stabilised lithium metal anode, Nat. Energy, 6, 17119. Liang, X., Pang, Q., Kochetkov, I. R., Sempere, M. S., Huang, H., Sun, X., & Nazar, L. F. (2017). A facile surface chemistry route to a stabilised lithium metal anode, Nat. Energy, 6, 17119.
Metadata
Title
MXene Materials as Electrodes for Lithium-Sulfur Batteries
Authors
Xiao Liang
Linda F. Nazar
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-19026-2_20