Skip to main content
Top
Published in: Journal of Computational Electronics 4/2016

21-07-2016

Electron–phonon dissipation in quantum nanodevices

Limitations of quantum-kinetic treatments

Authors: Rita Claudia Iotti, Fabrizio Dolcini, Arianna Montorsi, Fausto Rossi

Published in: Journal of Computational Electronics | Issue 4/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Microscopic modelling of electronic-phase coherence versus energy dissipation plays a crucial role in the design and optimization of new-generation electronic quantum nanodevices, like quantum-cascade light sources and quantum logic gates; in this context, a variety of simulation strategies have been proposed and employed. The aim of this article is to discuss virtues versus intrinsic limitations of non-Markovian density-matrix approaches. More specifically, we shall show that the usual mean-field treatment employed to derive quantum-kinetic equations may lead to highly unphysical results, like negative distribution functions and non-dissipative carrier–optical phonon couplings. By means of a simple two-level model, we shall show that such limitations are expected to be particularly severe in zero-dimensional electronic systems—like quantum-dot nanostructures, potential constituents of quantum-computation devices—coupled to dispersionless phonon modes. Such a behaviour is in striking contrast with the case of Markovian treatments, where a proper combination of adiabatic limit and mean-field approximation guarantees a physically acceptable solution.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
A relevant exception is the so-called dynamics-controlled truncation introduced by Axt and Stahl (see, e.g. Ref. [8]), based on an expansion in powers of the exciting laser field.
 
2
Here the complex-conjugation symbol has no effect on the (real) single-particle energy \(\epsilon _{\alpha _1}\) but plays a crucial role when the latter is replaced by a corresponding (complex) self-energy [see Eq. (22)].
 
Literature
1.
go back to reference Esaki, L., Tsu, R.: IBM. J. Res. Dev. 14(1), 61 (1970) Esaki, L., Tsu, R.: IBM. J. Res. Dev. 14(1), 61 (1970)
2.
go back to reference Cho, A.: Molecular Beam Epitaxy. Key Papers in Applied Physics. Springer, New York (1994) Cho, A.: Molecular Beam Epitaxy. Key Papers in Applied Physics. Springer, New York (1994)
3.
go back to reference Bimberg, D., Grundmann, M., Ledentsov, N.: Quantum Dot Heterostructures. Wiley, Chichester (1999) Bimberg, D., Grundmann, M., Ledentsov, N.: Quantum Dot Heterostructures. Wiley, Chichester (1999)
4.
go back to reference Ihn, T.: Semiconductor Nanostructures: Quantum States and Electronic Transport. OUP, Oxford (2010) Ihn, T.: Semiconductor Nanostructures: Quantum States and Electronic Transport. OUP, Oxford (2010)
5.
go back to reference Capasso, F.: Physics of Quantum Electron Devices. Springer Series in Electronics and Photonics. Springer, London (2011) Capasso, F.: Physics of Quantum Electron Devices. Springer Series in Electronics and Photonics. Springer, London (2011)
6.
go back to reference Jacoboni, C., Lugli, P.: The Monte Carlo Method for Semiconductor Device Simulation. Springer, New York (1989)CrossRef Jacoboni, C., Lugli, P.: The Monte Carlo Method for Semiconductor Device Simulation. Springer, New York (1989)CrossRef
7.
go back to reference Frensley, W.R.: Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys. 62, 745 (1990)CrossRef Frensley, W.R.: Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys. 62, 745 (1990)CrossRef
8.
go back to reference Axt, V.M., Mukamel, S.: Nonlinear optics of semiconductor and molecular nanostructures: a common perspective. Rev. Mod. Phys. 70, 145 (1998)CrossRef Axt, V.M., Mukamel, S.: Nonlinear optics of semiconductor and molecular nanostructures: a common perspective. Rev. Mod. Phys. 70, 145 (1998)CrossRef
9.
go back to reference Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattice. Microst. 28, 253 (2000)CrossRef Datta, S.: Nanoscale device modeling: the Green’s function method. Superlattice. Microst. 28, 253 (2000)CrossRef
10.
go back to reference Rossi, F., Kuhn, T.: Theory of ultrafast phenomena in photoexcited semiconductors. Rev. Mod. Phys. 74, 895 (2002)CrossRef Rossi, F., Kuhn, T.: Theory of ultrafast phenomena in photoexcited semiconductors. Rev. Mod. Phys. 74, 895 (2002)CrossRef
11.
go back to reference Axt, V.M., Kuhn, T.: Femtosecond spectroscopy in semiconductors: a key to coherences, correlations and quantum kinetics. Rep. Prog. Phys. 67, 433 (2004)CrossRef Axt, V.M., Kuhn, T.: Femtosecond spectroscopy in semiconductors: a key to coherences, correlations and quantum kinetics. Rep. Prog. Phys. 67, 433 (2004)CrossRef
12.
go back to reference Jacoboni, C., Bordone, P.: The Wigner-function approach to non-equilibrium electron transport. Rep. Prog. Phys. 67, 1033 (2004)CrossRef Jacoboni, C., Bordone, P.: The Wigner-function approach to non-equilibrium electron transport. Rep. Prog. Phys. 67, 1033 (2004)CrossRef
13.
go back to reference Iotti, R.C., Rossi, F.: Microscopic theory of semiconductor-based optoelectronic devices. Rep. Prog. Phys. 68, 2533 (2005)CrossRef Iotti, R.C., Rossi, F.: Microscopic theory of semiconductor-based optoelectronic devices. Rep. Prog. Phys. 68, 2533 (2005)CrossRef
14.
go back to reference Haug, H., Jauho, A.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, New York (2007) Haug, H., Jauho, A.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, New York (2007)
15.
go back to reference Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005)CrossRefMATH Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005)CrossRefMATH
16.
go back to reference Haug, H., Koch, S.: Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific, Singapore (2004)CrossRefMATH Haug, H., Koch, S.: Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific, Singapore (2004)CrossRefMATH
17.
go back to reference Rossi, F.: Theory of Semiconductor Quantum Devices: Microscopic Modeling and Simulation Strategies. Springer, Singapore (2011)CrossRefMATH Rossi, F.: Theory of Semiconductor Quantum Devices: Microscopic Modeling and Simulation Strategies. Springer, Singapore (2011)CrossRefMATH
18.
go back to reference Buot, F.: Nonequilibrium Quantum Transport Physics in Nanosystems: Foundation of Computational Nonequilibrium Physics in Nanoscience and Nanotechnology. World Scientific, Singapore (2009)CrossRefMATH Buot, F.: Nonequilibrium Quantum Transport Physics in Nanosystems: Foundation of Computational Nonequilibrium Physics in Nanoscience and Nanotechnology. World Scientific, Singapore (2009)CrossRefMATH
19.
20.
go back to reference Davies, E.: Quantum Theory of Open Systems. Academic Press, Cambridge (1976)MATH Davies, E.: Quantum Theory of Open Systems. Academic Press, Cambridge (1976)MATH
21.
go back to reference Taj, D., Iotti, R.C., Rossi, F.: Microscopic modeling of energy relaxation and decoherence in quantum optoelectronic devices at the nanoscale. Eur. Phys. J. B 72, 305 (2009)CrossRef Taj, D., Iotti, R.C., Rossi, F.: Microscopic modeling of energy relaxation and decoherence in quantum optoelectronic devices at the nanoscale. Eur. Phys. J. B 72, 305 (2009)CrossRef
22.
go back to reference Dolcini, F., Iotti, R.C., Rossi, F.: Interplay between energy dissipation and reservoir-induced thermalization in nonequilibrium quantum nanodevices. Phys. Rev. B 88, 115421 (2013)CrossRef Dolcini, F., Iotti, R.C., Rossi, F.: Interplay between energy dissipation and reservoir-induced thermalization in nonequilibrium quantum nanodevices. Phys. Rev. B 88, 115421 (2013)CrossRef
23.
go back to reference Rosati, R., Iotti, R.C., Dolcini, F., Rossi, F.: Derivation of nonlinear single-particle equations via many-body Lindblad superoperators: a density-matrix approach. Phys. Rev. B 90, 125140 (2014)CrossRef Rosati, R., Iotti, R.C., Dolcini, F., Rossi, F.: Derivation of nonlinear single-particle equations via many-body Lindblad superoperators: a density-matrix approach. Phys. Rev. B 90, 125140 (2014)CrossRef
24.
go back to reference Bonitz, M.: Quantum Kinetic Theory. Teubner-Texte zur Physik, Teubner (1998)MATH Bonitz, M.: Quantum Kinetic Theory. Teubner-Texte zur Physik, Teubner (1998)MATH
25.
go back to reference Tran Thoai, D.B., Haug, H.: Band-edge quantum kinetics for coherent ultrashort-pulse spectroscopy in polar semiconductors. Phys. Rev. B 47, 3574 (1993)CrossRef Tran Thoai, D.B., Haug, H.: Band-edge quantum kinetics for coherent ultrashort-pulse spectroscopy in polar semiconductors. Phys. Rev. B 47, 3574 (1993)CrossRef
26.
go back to reference Schilp, J., Kuhn, T., Mahler, G.: Electron-phonon quantum kinetics in pulse-excited semiconductors: memory and renormalization effects. Phys. Rev. B 50, 5435 (1994)CrossRef Schilp, J., Kuhn, T., Mahler, G.: Electron-phonon quantum kinetics in pulse-excited semiconductors: memory and renormalization effects. Phys. Rev. B 50, 5435 (1994)CrossRef
27.
go back to reference Butscher, S., Förstner, J., Waldmüller, I., Knorr, A.: Ultrafast electron-phonon interaction of intersubband transitions: quantum kinetics from adiabatic following to Rabi-oscillations. Phys. Rev. B 72, 045314 (2005)CrossRef Butscher, S., Förstner, J., Waldmüller, I., Knorr, A.: Ultrafast electron-phonon interaction of intersubband transitions: quantum kinetics from adiabatic following to Rabi-oscillations. Phys. Rev. B 72, 045314 (2005)CrossRef
28.
go back to reference Vu, Q.T., Haug, H., Koch, S.W.: Relaxation and dephasing quantum kinetics for a quantum dot in an optically excited quantum well. Phys. Rev. B 73, 205317 (2006)CrossRef Vu, Q.T., Haug, H., Koch, S.W.: Relaxation and dephasing quantum kinetics for a quantum dot in an optically excited quantum well. Phys. Rev. B 73, 205317 (2006)CrossRef
29.
go back to reference Gartner, P., Seebeck, J., Jahnke, F.: Relaxation properties of the quantum kinetics of carrier LO-phonon interaction in quantum wells and quantum dots. Phys. Rev. B 73, 115307 (2006)CrossRef Gartner, P., Seebeck, J., Jahnke, F.: Relaxation properties of the quantum kinetics of carrier LO-phonon interaction in quantum wells and quantum dots. Phys. Rev. B 73, 115307 (2006)CrossRef
30.
go back to reference Rozbicki, E., Machnikowski, P.: Quantum Kinetic theory of phonon-assisted excitation transfer in quantum dot molecules. Phys. Rev. Lett. 100, 027401 (2008)CrossRef Rozbicki, E., Machnikowski, P.: Quantum Kinetic theory of phonon-assisted excitation transfer in quantum dot molecules. Phys. Rev. Lett. 100, 027401 (2008)CrossRef
31.
go back to reference Grodecka-Grad, A., Förstner, J.: Theory of phonon-mediated relaxation in doped quantum dot molecules. Phys. Rev. B 81, 115305 (2010)CrossRef Grodecka-Grad, A., Förstner, J.: Theory of phonon-mediated relaxation in doped quantum dot molecules. Phys. Rev. B 81, 115305 (2010)CrossRef
32.
go back to reference Papenkort, T., Axt, V.M., Kuhn, T.: Optical excitation of squeezed longitudinal optical phonon states in an electrically biased quantum well. Phys. Rev. B 85, 235317 (2012)CrossRef Papenkort, T., Axt, V.M., Kuhn, T.: Optical excitation of squeezed longitudinal optical phonon states in an electrically biased quantum well. Phys. Rev. B 85, 235317 (2012)CrossRef
33.
go back to reference Cygorek, M., Axt, V.M.: Comparison between a quantum kinetic theory of spin transfer dynamics in Mn-doped bulk semiconductors and its Markov limit for nonzero Mn magnetization. Phys. Rev. B 90, 035206 (2014) Cygorek, M., Axt, V.M.: Comparison between a quantum kinetic theory of spin transfer dynamics in Mn-doped bulk semiconductors and its Markov limit for nonzero Mn magnetization. Phys. Rev. B 90, 035206 (2014)
34.
go back to reference Iotti, R.C., Rossi, F.: Electronic phase coherence versus dissipation in solid-state quantum devices: two approximations are better than one. Europhys. Lett. 112, 67005 (2015)CrossRef Iotti, R.C., Rossi, F.: Electronic phase coherence versus dissipation in solid-state quantum devices: two approximations are better than one. Europhys. Lett. 112, 67005 (2015)CrossRef
35.
go back to reference Iotti, R.C., Rossi, F.: Coupled carrier-phonon nonequilibrium dynamics in terahertz quantum cascade lasers: a Monte Carlo analysis. New J. Phys. 15, 075027 (2013)CrossRef Iotti, R.C., Rossi, F.: Coupled carrier-phonon nonequilibrium dynamics in terahertz quantum cascade lasers: a Monte Carlo analysis. New J. Phys. 15, 075027 (2013)CrossRef
36.
go back to reference Rossi, F.: Semiconductor Macroatoms: Basic Physics and Quantum-device Applications. Imperial College Press, London (2005)CrossRef Rossi, F.: Semiconductor Macroatoms: Basic Physics and Quantum-device Applications. Imperial College Press, London (2005)CrossRef
37.
go back to reference Axt, V.M., Herbst, M., Kuhn, T.: Coherent control of phonon quantum beats. Superlattice. Microst. 26, 117 (1999)CrossRef Axt, V.M., Herbst, M., Kuhn, T.: Coherent control of phonon quantum beats. Superlattice. Microst. 26, 117 (1999)CrossRef
38.
go back to reference Verzelen, O., Ferreira, R., Bastard, G.: Excitonic polarons in semiconductor quantum dots. Phys. Rev. Lett. 88, 146803 (2002)CrossRef Verzelen, O., Ferreira, R., Bastard, G.: Excitonic polarons in semiconductor quantum dots. Phys. Rev. Lett. 88, 146803 (2002)CrossRef
39.
go back to reference Grange, T., Ferreira, R., Bastard, G.: Polaron relaxation in self-assembled quantum dots: breakdown of the semiclassical model. Phys. Rev. B 76, 241304 (2007)CrossRef Grange, T., Ferreira, R., Bastard, G.: Polaron relaxation in self-assembled quantum dots: breakdown of the semiclassical model. Phys. Rev. B 76, 241304 (2007)CrossRef
40.
41.
go back to reference Zimmermann, R., Wauer, J.: Non-Markovian relaxation in semiconductors: an exactly soluble model. J. Lumin. 58, 271 (1994)CrossRef Zimmermann, R., Wauer, J.: Non-Markovian relaxation in semiconductors: an exactly soluble model. J. Lumin. 58, 271 (1994)CrossRef
42.
go back to reference Glässl, M., Vagov, A., Lüker, S., Reiter, D.E., Croitoru, M.D., Machnikowski, P., Axt, V.M., Kuhn, T.: Long-time dynamics and stationary nonequilibrium of an optically driven strongly confined quantum dot coupled to phonons. Phys. Rev. B 84, 195311 (2011)CrossRef Glässl, M., Vagov, A., Lüker, S., Reiter, D.E., Croitoru, M.D., Machnikowski, P., Axt, V.M., Kuhn, T.: Long-time dynamics and stationary nonequilibrium of an optically driven strongly confined quantum dot coupled to phonons. Phys. Rev. B 84, 195311 (2011)CrossRef
Metadata
Title
Electron–phonon dissipation in quantum nanodevices
Limitations of quantum-kinetic treatments
Authors
Rita Claudia Iotti
Fabrizio Dolcini
Arianna Montorsi
Fausto Rossi
Publication date
21-07-2016
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 4/2016
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0858-6

Other articles of this Issue 4/2016

Journal of Computational Electronics 4/2016 Go to the issue