Skip to main content
Top

2018 | OriginalPaper | Chapter

8. Electronic Behavior of Nanocrystalline Silicon Thin Film Transistor

Authors : Prachi Sharma, Navneet Gupta

Published in: Nanomaterials and Their Applications

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Thin film transistor (TFT) plays an important role for the fabrication of highly functional active matrix backplanes for large area display applications such as organic light emitting diodes (OLEDs). Nanocrystalline silicon (nc-Si) has recently achieved lot of interest over existing hydrogenated amorphous silicon (a-Si:H) and polycrystalline silicon (poly-Si) due to its superior properties which makes it suitable channel material for the fabrication of TFTs. In present work, the physical insight into the nc-Si TFT device characteristics and device non idealities is reported which can provide important step for the production of high performance large area display devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A.J. Snell, K.D. Mackenzie, W.E. Spear, P.G. LeComber, Application of amorphous silicon field effect transistors in addressable liquid crystal display panels. Appl. Phys. Lett. 24, 357–362 (1981) A.J. Snell, K.D. Mackenzie, W.E. Spear, P.G. LeComber, Application of amorphous silicon field effect transistors in addressable liquid crystal display panels. Appl. Phys. Lett. 24, 357–362 (1981)
2.
go back to reference M. Mizukami, K. Inukai, H. Yamagata, T. Konuma, T. Nishi, J. Koyama, S. Yamazaki, 6-bit digital VGA OLED. SID Int. Symp. Dig. Tech. Papers 31, 912–915 (2000)CrossRef M. Mizukami, K. Inukai, H. Yamagata, T. Konuma, T. Nishi, J. Koyama, S. Yamazaki, 6-bit digital VGA OLED. SID Int. Symp. Dig. Tech. Papers 31, 912–915 (2000)CrossRef
3.
go back to reference K. Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, 2nd edn. (Wiley, West Sussex, England, 2003)CrossRef K. Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, 2nd edn. (Wiley, West Sussex, England, 2003)CrossRef
4.
go back to reference P. Smith, D. Allee, C. Moyer, D. Loy, Flexible transistor arrays. Inf. Display 21, 18–22 (2005) P. Smith, D. Allee, C. Moyer, D. Loy, Flexible transistor arrays. Inf. Display 21, 18–22 (2005)
5.
go back to reference J.J. Lih, C.F. Sung, C.H. Li, T.H. Hsiao, H.H. Lee, Comparison of a-Si and poly-Si for AMOLED displays. J. Soc. Inform. Display 12, 367–371 (2004)CrossRef J.J. Lih, C.F. Sung, C.H. Li, T.H. Hsiao, H.H. Lee, Comparison of a-Si and poly-Si for AMOLED displays. J. Soc. Inform. Display 12, 367–371 (2004)CrossRef
6.
go back to reference J.H. Park, S.M. Han, Y.H. Choi, S.J. Kim, M.K. Han, “New In-Situ Process of Top Gate Nanocrystalline Silicon Thin Film Transistors Fabricated at 180° C for the Suppression of Leakage Current,” IEEE International Electron Devices Meeting, Washington, 2007, 10–12 Dec 10–12 2007, pp. 595–598 J.H. Park, S.M. Han, Y.H. Choi, S.J. Kim, M.K. Han, “New In-Situ Process of Top Gate Nanocrystalline Silicon Thin Film Transistors Fabricated at 180° C for the Suppression of Leakage Current,” IEEE International Electron Devices Meeting, Washington, 2007, 10–12 Dec 10–12 2007, pp. 595–598
7.
go back to reference M.R. Esmaeili-Rad, Nanocrystalline Silicon Thin Film Transistor [PhD thesis], University of Waterloo, Canada, 2008 M.R. Esmaeili-Rad, Nanocrystalline Silicon Thin Film Transistor [PhD thesis], University of Waterloo, Canada, 2008
8.
go back to reference P. Sharma, N. Gupta, Investigation on material selection for gate dielectric in nanocrystalline silicon (nc-Si) top-gated thin film transistor (TFT) using Ashby’s, VIKOR and TOPSIS. J. Mat. Sci.: Mat. Electron. (Springer) 26, 9607–9613 (2015) P. Sharma, N. Gupta, Investigation on material selection for gate dielectric in nanocrystalline silicon (nc-Si) top-gated thin film transistor (TFT) using Ashby’s, VIKOR and TOPSIS. J. Mat. Sci.: Mat. Electron. (Springer) 26, 9607–9613 (2015)
9.
go back to reference M.F. Ashby’s, Multi objective optimization in material design and selection. Acta Materialia. 48, 1792–1795 (2000) M.F. Ashby’s, Multi objective optimization in material design and selection. Acta Materialia. 48, 1792–1795 (2000)
10.
go back to reference S. Opricovic, G.H. Tzeng, Multicriteria planning of post-earthquake sustainable reconstruction. Comput.-Aided Civil Infrastruct. Eng. 17, 211–220 (2002)CrossRef S. Opricovic, G.H. Tzeng, Multicriteria planning of post-earthquake sustainable reconstruction. Comput.-Aided Civil Infrastruct. Eng. 17, 211–220 (2002)CrossRef
11.
go back to reference C. Hwang, K. Yoon, Multiple attribute decision making methods and application survey, vol. 186 (Business & Economics, Berlin, Springer, 2005) C. Hwang, K. Yoon, Multiple attribute decision making methods and application survey, vol. 186 (Business & Economics, Berlin, Springer, 2005)
12.
go back to reference R.B. Min, S. Wagner, Nanocrystalline silicon thin-film transistors with 50-nm-thick deposited channel layer, 10 cm2 V−1 s−1 electron mobility and 108 on/off current ratio. Appl. Phys. A 74, 541–543 (2002)CrossRef R.B. Min, S. Wagner, Nanocrystalline silicon thin-film transistors with 50-nm-thick deposited channel layer, 10 cm2 V−1 s−1 electron mobility and 108 on/off current ratio. Appl. Phys. A 74, 541–543 (2002)CrossRef
13.
go back to reference I.C. Cheng, W. Sigurd, Hole and electron field-effect mobilities in nanocrystalline silicon deposited at 150 C. Appl. Phys. Lett. 80, 440–442 (2002)CrossRef I.C. Cheng, W. Sigurd, Hole and electron field-effect mobilities in nanocrystalline silicon deposited at 150 C. Appl. Phys. Lett. 80, 440–442 (2002)CrossRef
14.
go back to reference I.C. Cheng, W. Sigurd, Nanocrystalline silicon thin film transistors. IEE Proc.-Circ., Devices Syst. 150, 339–344 (2003)CrossRef I.C. Cheng, W. Sigurd, Nanocrystalline silicon thin film transistors. IEE Proc.-Circ., Devices Syst. 150, 339–344 (2003)CrossRef
15.
go back to reference C.H. Lee, A. Sazonov, A. Nathan, “High mobility n-channel and p-channel nanocrystalline silicon thin-film transistors” IEEE International Electron Devices Meeting, IEDM Technical Digest. Washington, 5 Dec 2005, pp. 915–918 C.H. Lee, A. Sazonov, A. Nathan, “High mobility n-channel and p-channel nanocrystalline silicon thin-film transistors” IEEE International Electron Devices Meeting, IEDM Technical Digest. Washington, 5 Dec 2005, pp. 915–918
16.
go back to reference C.H. Lee, A. Sazonov, A. Nathan, High-mobility nanocrystalline silicon thin-film transistors fabricated by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 86, 222106-1-3 (2005) C.H. Lee, A. Sazonov, A. Nathan, High-mobility nanocrystalline silicon thin-film transistors fabricated by plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 86, 222106-1-3 (2005)
17.
go back to reference T. Kamei, M. Kondo, A. Matsuda, A significant reduction of impurity contents in hydrogenated microcrystalline silicon films for increased grain size and reduced defect density. Jpn. J. Appl. Phys. 37, L265–L268 (1998)CrossRef T. Kamei, M. Kondo, A. Matsuda, A significant reduction of impurity contents in hydrogenated microcrystalline silicon films for increased grain size and reduced defect density. Jpn. J. Appl. Phys. 37, L265–L268 (1998)CrossRef
18.
go back to reference C.H. Lee, S. Andrei, N. Arokia, R. John, Directly deposited nanocrystalline silicon thin-film transistors with ultra high mobilities. Appl. Phys. Lett. 89, 2101 (2006) C.H. Lee, S. Andrei, N. Arokia, R. John, Directly deposited nanocrystalline silicon thin-film transistors with ultra high mobilities. Appl. Phys. Lett. 89, 2101 (2006)
19.
go back to reference C.H. Lee, D. Striakhilev, A. Nathan, “Stability of nc-Si: H TFTs with silicon nitride gate dielectric. IEEE Trans. Electron Devices 54, 45–51 (2007)CrossRef C.H. Lee, D. Striakhilev, A. Nathan, “Stability of nc-Si: H TFTs with silicon nitride gate dielectric. IEEE Trans. Electron Devices 54, 45–51 (2007)CrossRef
20.
go back to reference D.W. Kang, J.H. Park, S.M. Han, M.K. Han, The effects of nanocrystalline silicon thin film thickness on top-gate nanocrystalline silicon thin film transistor fabricated at 180°C. J. Semicond. Technol. Sci. 8, 111–114 (2008)CrossRef D.W. Kang, J.H. Park, S.M. Han, M.K. Han, The effects of nanocrystalline silicon thin film thickness on top-gate nanocrystalline silicon thin film transistor fabricated at 180°C. J. Semicond. Technol. Sci. 8, 111–114 (2008)CrossRef
21.
go back to reference H.J. Lee, A. Sazonov, A. Nathan, Leakage current mechanisms in top-gate nanocrystalline silicon thin film transistors. Appl. Phys. Lett. 92, 083509 (2008)CrossRef H.J. Lee, A. Sazonov, A. Nathan, Leakage current mechanisms in top-gate nanocrystalline silicon thin film transistors. Appl. Phys. Lett. 92, 083509 (2008)CrossRef
22.
go back to reference I. Cheng, S. Wagner, S.E. Vallat, Contact resistance in nanocrystalline silicon thin-film transistors. IEEE Trans. Electron Devices 55, 973–977 (2008)CrossRef I. Cheng, S. Wagner, S.E. Vallat, Contact resistance in nanocrystalline silicon thin-film transistors. IEEE Trans. Electron Devices 55, 973–977 (2008)CrossRef
23.
go back to reference Y. Djeridane, K.H. Kim, S.H. Kim, J.H. Bae, J.Y. Jeong, J. Jang, Fabrication and characterization of ion-doped p-Type nanocrystalline silicon thin-film transistors. J. Korean Phys. Soc. 54, 437–440 (2009)CrossRef Y. Djeridane, K.H. Kim, S.H. Kim, J.H. Bae, J.Y. Jeong, J. Jang, Fabrication and characterization of ion-doped p-Type nanocrystalline silicon thin-film transistors. J. Korean Phys. Soc. 54, 437–440 (2009)CrossRef
24.
go back to reference A. Subramaniam, K.D. Cantley, H.J. Stiegler, R.A. Chapman, E.M. Vogel, Submicron ambipolar nanocrystalline silicon thin-film transistors and inverters. IEEE Trans. Electron Devices 59, 359–366 (2012)CrossRef A. Subramaniam, K.D. Cantley, H.J. Stiegler, R.A. Chapman, E.M. Vogel, Submicron ambipolar nanocrystalline silicon thin-film transistors and inverters. IEEE Trans. Electron Devices 59, 359–366 (2012)CrossRef
25.
go back to reference M. Fonrodona, J. Escarre, F. Villar, D Soler, J. Bertomeu, J. Andreu, A. Saboundji, N. Coulon, T. Mohammed-Brahim T, Nanocrystalline top-gate thin film transistors deposited at low temperature by Hot-Wire CVD on glass. IEEE Conference on Electron Devices, Spanish, 2–4 Feb 2005, pp. 183–186 (2005) M. Fonrodona, J. Escarre, F. Villar, D Soler, J. Bertomeu, J. Andreu, A. Saboundji, N. Coulon, T. Mohammed-Brahim T, Nanocrystalline top-gate thin film transistors deposited at low temperature by Hot-Wire CVD on glass. IEEE Conference on Electron Devices, Spanish, 2–4 Feb 2005, pp. 183–186 (2005)
26.
go back to reference M. Fonrodona, J. Soler, F. Escarré, J. Villar, J. Bertomeu, A.S. Andreu, C. Nathalie, M.B. Tayeb, Low temperature amorphous and nanocrystalline silicon thin film transistors deposited by hot-wire CVD on glass substrate. Thin Solid Films 501, 303–306 (2006)CrossRef M. Fonrodona, J. Soler, F. Escarré, J. Villar, J. Bertomeu, A.S. Andreu, C. Nathalie, M.B. Tayeb, Low temperature amorphous and nanocrystalline silicon thin film transistors deposited by hot-wire CVD on glass substrate. Thin Solid Films 501, 303–306 (2006)CrossRef
27.
go back to reference D. Dosev, T. Ytterdal, J. Pallares, L.F. Marsal, B. Iñíguez, DC SPICE model for nanocrystalline and microcrystalline silicon TFTs. IEEE Trans. Electron Devices 49, 1979–1983 (2002)CrossRef D. Dosev, T. Ytterdal, J. Pallares, L.F. Marsal, B. Iñíguez, DC SPICE model for nanocrystalline and microcrystalline silicon TFTs. IEEE Trans. Electron Devices 49, 1979–1983 (2002)CrossRef
28.
go back to reference D. Dosev, B. Iniguez, L.F. Marsal, J. Pallares, T. Ytterdal, Device simulations of nanocrystalline silicon thin-film transistors. Solid-State Electron. 47, 1917–1920 (2003)CrossRef D. Dosev, B. Iniguez, L.F. Marsal, J. Pallares, T. Ytterdal, Device simulations of nanocrystalline silicon thin-film transistors. Solid-State Electron. 47, 1917–1920 (2003)CrossRef
29.
go back to reference M. Estrada, A. Cerdeira, L. Resendiz, B. Iniguez, L.F. Marzal, J. Pallares, Effect of localized traps on the anomalous behavior of the transconductance in nanocrystalline TFTs. Microelectron. Reliab. 45, 1161–1166 (2005) M. Estrada, A. Cerdeira, L. Resendiz, B. Iniguez, L.F. Marzal, J. Pallares, Effect of localized traps on the anomalous behavior of the transconductance in nanocrystalline TFTs. Microelectron. Reliab. 45, 1161–1166 (2005)
30.
go back to reference A. Cerdeira, M. Estrada, B. Iniguez, J. Pallares, L.F. Marsal, Modeling and parameter extraction procedure for nanocrystalline TFTs. Solid-State Electron. 48, 103–109 (2004)CrossRef A. Cerdeira, M. Estrada, B. Iniguez, J. Pallares, L.F. Marsal, Modeling and parameter extraction procedure for nanocrystalline TFTs. Solid-State Electron. 48, 103–109 (2004)CrossRef
31.
go back to reference A.T. Hatzopoulos, L. Pappas, D.H. Tassis, N. Arpatzanis, C.A. Dimitriadis, F. Templier, M. Oudwan, Analytical current-voltage model for nanocrystalline silicon thin-film transistors. Appl. Phys. Lett. 89, 193504-1-3 (2006) A.T. Hatzopoulos, L. Pappas, D.H. Tassis, N. Arpatzanis, C.A. Dimitriadis, F. Templier, M. Oudwan, Analytical current-voltage model for nanocrystalline silicon thin-film transistors. Appl. Phys. Lett. 89, 193504-1-3 (2006)
32.
go back to reference I. Pappas, C.A. Dimitriadis, F. Templier, M. Oudwan, G. Kamarinos, Above-threshold drain current model including band tail states in nanocrystalline silicon thin-film transistors for circuit implementation. J. Appl. Phys. 101, 84506-1-4 (2007) I. Pappas, C.A. Dimitriadis, F. Templier, M. Oudwan, G. Kamarinos, Above-threshold drain current model including band tail states in nanocrystalline silicon thin-film transistors for circuit implementation. J. Appl. Phys. 101, 84506-1-4 (2007)
33.
go back to reference M.R. Esmaeili-Rad, A. Sazonov, A. Nathan, Analysis of the off current in nanocrystalline silicon bottom-gate thin-film transistors. J. Appl. Phys. 103, 074502-1-6 (2008) M.R. Esmaeili-Rad, A. Sazonov, A. Nathan, Analysis of the off current in nanocrystalline silicon bottom-gate thin-film transistors. J. Appl. Phys. 103, 074502-1-6 (2008)
34.
go back to reference A. Ahnood, F. Li, K. Ghaffarzadeh, M.R. Esmaeili-Rad, A. Nathan, A. Sazonov, P. Servati, Non-ohmic contact resistance and field-effect mobility in nanocrystalline silicon thin film transistors. Appl. Phys. Lett. 93, 163503-1-3 (2008) A. Ahnood, F. Li, K. Ghaffarzadeh, M.R. Esmaeili-Rad, A. Nathan, A. Sazonov, P. Servati, Non-ohmic contact resistance and field-effect mobility in nanocrystalline silicon thin film transistors. Appl. Phys. Lett. 93, 163503-1-3 (2008)
35.
go back to reference L.F. Mao, The quantum size effects on the surface potential of nanocrystalline silicon thin film transistors. Thin Solid Films 518, 3396–3401 (2010)CrossRef L.F. Mao, The quantum size effects on the surface potential of nanocrystalline silicon thin film transistors. Thin Solid Films 518, 3396–3401 (2010)CrossRef
36.
go back to reference T. Anutgan, M. Anutgan, I. Atilgan, B. Katircioglu, Capacitance analyses of hydrogenated nanocrystalline silicon based thin film transistor. Thin Solid Film. 519, 3914–3921 (2011)CrossRef T. Anutgan, M. Anutgan, I. Atilgan, B. Katircioglu, Capacitance analyses of hydrogenated nanocrystalline silicon based thin film transistor. Thin Solid Film. 519, 3914–3921 (2011)CrossRef
37.
go back to reference I.P. Steinke, P.P. Ruden, Percolation model for the threshold voltage of field-effect transistors with nanocrystalline channels. J. Appl. Phys. 111, 014510-1-5 (2012) I.P. Steinke, P.P. Ruden, Percolation model for the threshold voltage of field-effect transistors with nanocrystalline channels. J. Appl. Phys. 111, 014510-1-5 (2012)
38.
go back to reference P. Sharma, N. Gupta, Threshold voltage modeling on nanocrystalline silicon thin-film transistors. J. Electron Devices 19, 1608–1612 (2014) P. Sharma, N. Gupta, Threshold voltage modeling on nanocrystalline silicon thin-film transistors. J. Electron Devices 19, 1608–1612 (2014)
39.
go back to reference M.R. Esmaeili-Rad, A. Sazonov, A. Nathan, Absence of defect state creation in nanocrystalline silicon thin film transistors deduced from constant current stress measurements. Appl. Phys. Lett. 91: 113511-1-3 (2007) M.R. Esmaeili-Rad, A. Sazonov, A. Nathan, Absence of defect state creation in nanocrystalline silicon thin film transistors deduced from constant current stress measurements. Appl. Phys. Lett. 91: 113511-1-3 (2007)
40.
go back to reference S.J. Kim, S.G. Park, S.B. Ji, M.K. Han, Effect of drain bias stress on stability of nanocrystalline silicon thin film transistors with various channel lengths. Jpn. J. Appl. Phys. 20, 04DH12 (2010) S.J. Kim, S.G. Park, S.B. Ji, M.K. Han, Effect of drain bias stress on stability of nanocrystalline silicon thin film transistors with various channel lengths. Jpn. J. Appl. Phys. 20, 04DH12 (2010)
41.
go back to reference P. Sharma, N. Gupta, Model for threshold voltage instability in top-gated nanocrystalline silicon thin film transistor. J. Comput. Electron. (Springer) 15, 666–671 (2016)CrossRef P. Sharma, N. Gupta, Model for threshold voltage instability in top-gated nanocrystalline silicon thin film transistor. J. Comput. Electron. (Springer) 15, 666–671 (2016)CrossRef
42.
go back to reference C.M. Svensson, K.I. Lundstrom, Trap-assisted charge injection in MNOS structures. J. Appl. Phys. 44, 4657–4663 (1973)CrossRef C.M. Svensson, K.I. Lundstrom, Trap-assisted charge injection in MNOS structures. J. Appl. Phys. 44, 4657–4663 (1973)CrossRef
43.
go back to reference S.W. Wright, J.C. Anderson, Trapping centres in sputtered SiO2 films. Thin Solid Films 62, 89–96 (1979)CrossRef S.W. Wright, J.C. Anderson, Trapping centres in sputtered SiO2 films. Thin Solid Films 62, 89–96 (1979)CrossRef
44.
go back to reference H. Koelmans, H.C. De Graaff, Drift phenomena in CdSe thin film FET’s. Solid-State Electron. 10, 997–1000 (1967)CrossRef H. Koelmans, H.C. De Graaff, Drift phenomena in CdSe thin film FET’s. Solid-State Electron. 10, 997–1000 (1967)CrossRef
45.
go back to reference M.J. Powell, Charge trapping instabilities in amorphous silicon silicon nitride thin film transistors. Appl. Phys. Lett. 43, 597–599 (1983)CrossRef M.J. Powell, Charge trapping instabilities in amorphous silicon silicon nitride thin film transistors. Appl. Phys. Lett. 43, 597–599 (1983)CrossRef
46.
go back to reference R.A. Street, Hydrogenated amorphous silicon (Cambridge University Press, Cambridge, 1991)CrossRef R.A. Street, Hydrogenated amorphous silicon (Cambridge University Press, Cambridge, 1991)CrossRef
47.
go back to reference R.A. Street, C.C. Tsai, Fast and slow states at the interface of amorphous silicon and silicon nitride. Appl. Phys. Lett. 48, 1672–1674 (1986)CrossRef R.A. Street, C.C. Tsai, Fast and slow states at the interface of amorphous silicon and silicon nitride. Appl. Phys. Lett. 48, 1672–1674 (1986)CrossRef
48.
go back to reference A.R. Hepburn, J.M. Marshall, C. Main, M.J. Powell, C.V. Berkel, Metastable defects in amorphous silicon thin film transistors. Phys. Rev. Lett. 56, 2215–2218 (1986)CrossRef A.R. Hepburn, J.M. Marshall, C. Main, M.J. Powell, C.V. Berkel, Metastable defects in amorphous silicon thin film transistors. Phys. Rev. Lett. 56, 2215–2218 (1986)CrossRef
49.
go back to reference C.V. Berkel, M. Powell, Resolution of amorphous silicon thin film transistor instability mechanisms using ambipolar transistors. Appl. Phys. Lett. 51, 1094–1096 (1987) C.V. Berkel, M. Powell, Resolution of amorphous silicon thin film transistor instability mechanisms using ambipolar transistors. Appl. Phys. Lett. 51, 1094–1096 (1987)
50.
go back to reference M. Stutzmann, W.B. Jackson, C.C. Tsai, Light-induced metastable defects in hydrogenated amorphous silicon: a systematic study. Phys. Rev. B. 32, 23–47 (1985)CrossRef M. Stutzmann, W.B. Jackson, C.C. Tsai, Light-induced metastable defects in hydrogenated amorphous silicon: a systematic study. Phys. Rev. B. 32, 23–47 (1985)CrossRef
51.
go back to reference M.J. Powell, C.V. Berkel, I.D. French, D.H. Nicholls, Bias dependence of instability mechanisms in amorphous silicon thin film transistors. Appl. Phys. Lett. 51, 1242–1244 (1987)CrossRef M.J. Powell, C.V. Berkel, I.D. French, D.H. Nicholls, Bias dependence of instability mechanisms in amorphous silicon thin film transistors. Appl. Phys. Lett. 51, 1242–1244 (1987)CrossRef
52.
go back to reference M.J. Powell, C.V. Berkel, J.R. Hughes, Time and temperature dependence of instability mechanisms in amorphous silicon thin film transistors. Appl. Phys. Lett. 54, 1323–1325 (1989)CrossRef M.J. Powell, C.V. Berkel, J.R. Hughes, Time and temperature dependence of instability mechanisms in amorphous silicon thin film transistors. Appl. Phys. Lett. 54, 1323–1325 (1989)CrossRef
53.
go back to reference R.A. Street, The origin of metastable states in a-Si:H. Solar Cells. 24, 211–221 (1988)CrossRef R.A. Street, The origin of metastable states in a-Si:H. Solar Cells. 24, 211–221 (1988)CrossRef
54.
go back to reference G. Muller, On the generation and annealing of dangling bond defects in hydrogenated amorphous silicon. Appl. Phys. A 45, 41–51 (1988)CrossRef G. Muller, On the generation and annealing of dangling bond defects in hydrogenated amorphous silicon. Appl. Phys. A 45, 41–51 (1988)CrossRef
55.
go back to reference M.J. Powell, S.C. Deane, W.I. Milne, Bias stress induced creation and removal of dangling bond states in amorphous silicon thin film transistors. Appl. Phys. Lett. 60, 207–209 (1992)CrossRef M.J. Powell, S.C. Deane, W.I. Milne, Bias stress induced creation and removal of dangling bond states in amorphous silicon thin film transistors. Appl. Phys. Lett. 60, 207–209 (1992)CrossRef
56.
go back to reference S.C. Deane, R.B. Wehrspohn, M.J. Powell, Unification of the time and temperature dependence of dangling bond defect creation and removal in amorphous silicon thin film transistors, Phys. Rev. B. 58, 12 625–12 628 (1998) S.C. Deane, R.B. Wehrspohn, M.J. Powell, Unification of the time and temperature dependence of dangling bond defect creation and removal in amorphous silicon thin film transistors, Phys. Rev. B. 58, 12 625–12 628 (1998)
57.
go back to reference F.R. Libsch, J. Kanicki, Bias stress induced stretched exponential time dependence of charge injection and trapping in amorphous thin film transistors. Appl. Phys. Lett. 62, 1286–1288 (1993)CrossRef F.R. Libsch, J. Kanicki, Bias stress induced stretched exponential time dependence of charge injection and trapping in amorphous thin film transistors. Appl. Phys. Lett. 62, 1286–1288 (1993)CrossRef
58.
go back to reference D.L. Staebler, C.R. Wronski, Optically induced conductivity changes in discharge-produced hydrogenated amorphous silicon. J. Appl. Phys. 51, 3262–3268 (1980)CrossRef D.L. Staebler, C.R. Wronski, Optically induced conductivity changes in discharge-produced hydrogenated amorphous silicon. J. Appl. Phys. 51, 3262–3268 (1980)CrossRef
Metadata
Title
Electronic Behavior of Nanocrystalline Silicon Thin Film Transistor
Authors
Prachi Sharma
Navneet Gupta
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-6214-8_8

Premium Partners