Skip to main content
Top
Published in: Colloid and Polymer Science 5/2018

15-03-2018 | Original Contribution

Electroosmotic flow reversal and ion selectivity in a soft nanochannel

Authors: Naren Bag, S. Bhattacharyya, Partha P. Gopmandal, H. Ohshima

Published in: Colloid and Polymer Science | Issue 5/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This article deals with the modulation of electroosmotic flow (EOF) and transport of ionic species through the parallel plate soft nanochannel. The charged rigid walls of the channel are covered by diffuse polyelectrolyte layer (PEL) which entraps immobile charges. A diffuse distribution of the polymer segment density and charge density is assumed. A nonlinear model based on the Poisson-Nernst-Planck equations coupled with the Darcy-Brinkman equations is adopted. Going beyond the widely employed Debye-H\(\ddot {u}\)ckel linearization, we adopt a sophisticated numerical tool to study the effect of pertinent parameters on the modulation of EOF through the soft nanochannel. Several interesting key features including the flow reversal, occurrence of zero flow rate, and perm selectivity are studied by regulating the charges entrapped within the diffuse PEL and the surface charge distributed along the channel wall. The results indicate that the channel can be cation-selective, anion-selective, and non-selective based on the nature of the charges within the PEL and wall charge. We have also identified the parameter range for validity of the linearized model for the case of step-like PEL.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Actis P, Vilozny B , Seger RA, Li X, Jejelowo O, Rinaudo M, Pourmand N (2011) Voltage-controlled metal binding on polyelectrolyte-functionalized nanopores. Langmuir 27(10):6528–6533CrossRef Actis P, Vilozny B , Seger RA, Li X, Jejelowo O, Rinaudo M, Pourmand N (2011) Voltage-controlled metal binding on polyelectrolyte-functionalized nanopores. Langmuir 27(10):6528–6533CrossRef
2.
go back to reference Ali M, Yameen B, Cervera J, Ramirez P, Neumann R, Ensinger W, Knoll W, Azzaroni O (2010) Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment. J Am Chem Soc 132(24):8338–8348CrossRef Ali M, Yameen B, Cervera J, Ramirez P, Neumann R, Ensinger W, Knoll W, Azzaroni O (2010) Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment. J Am Chem Soc 132(24):8338–8348CrossRef
3.
go back to reference Chanda S, Sinha S, Das S (2014) Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters. Soft Matter 38:7558–7568CrossRef Chanda S, Sinha S, Das S (2014) Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters. Soft Matter 38:7558–7568CrossRef
4.
go back to reference Chen G, Das S (2015) Streaming potential and electroviscous effects in soft nanochannels beyond Debye–Hückel linearization. J Colloid Interface Sci 445:357–363CrossRef Chen G, Das S (2015) Streaming potential and electroviscous effects in soft nanochannels beyond Debye–Hückel linearization. J Colloid Interface Sci 445:357–363CrossRef
5.
go back to reference Chen G, Das S (2017) Massively enhanced electroosmotic transport in nanochannels grafted with end-charged polyelectrolyte brushes. J Phys Chem B 121(14):3130–3141CrossRef Chen G, Das S (2017) Massively enhanced electroosmotic transport in nanochannels grafted with end-charged polyelectrolyte brushes. J Phys Chem B 121(14):3130–3141CrossRef
6.
go back to reference Ding Z, Fong RB, Long CJ, Stayton PS, Hoffman AS (2001) Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 411(6833):59CrossRef Ding Z, Fong RB, Long CJ, Stayton PS, Hoffman AS (2001) Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 411(6833):59CrossRef
7.
go back to reference Duval JFL (2005) Electrokinetics of diffuse soft interfaces. 2. Analysis based on the nonlinear Poisson-Boltzmann equation. Langmuir 21(8):3247–3258CrossRef Duval JFL (2005) Electrokinetics of diffuse soft interfaces. 2. Analysis based on the nonlinear Poisson-Boltzmann equation. Langmuir 21(8):3247–3258CrossRef
8.
go back to reference Duval JFL, Ohshima H (2006) Electrophoresis of diffuse soft particles. Langmuir 22(8):3533–3546CrossRef Duval JFL, Ohshima H (2006) Electrophoresis of diffuse soft particles. Langmuir 22(8):3533–3546CrossRef
9.
go back to reference Duval JFL, van Leeuwen HP (2004) Electrokinetics of diffuse soft interfaces. 1. Limit of low Donnan potentials. Langmuir 20(23):10324–10336CrossRef Duval JFL, van Leeuwen HP (2004) Electrokinetics of diffuse soft interfaces. 1. Limit of low Donnan potentials. Langmuir 20(23):10324–10336CrossRef
10.
go back to reference Duval JFL, Zimmermann R, Cordeiro AL, Rein N, Werner C (2009) Electrokinetics of diffuse soft interfaces. iv. Analysis of streaming current measurements at thermoresponsive thin films. Langmuir 25 (18):10691–10703CrossRef Duval JFL, Zimmermann R, Cordeiro AL, Rein N, Werner C (2009) Electrokinetics of diffuse soft interfaces. iv. Analysis of streaming current measurements at thermoresponsive thin films. Langmuir 25 (18):10691–10703CrossRef
11.
go back to reference Fletcher CAJ (1991) Computational techniques for fluid dynamics, vol 2, 2nd edn. Springer, Berlin Fletcher CAJ (1991) Computational techniques for fluid dynamics, vol 2, 2nd edn. Springer, Berlin
12.
go back to reference Inglis DW, Goldys EM, Calander NP (2011) Simultaneous concentration and separation of proteins in a nanochannel. Angewandte Chemie Int Edn 50(33):7546–7550CrossRef Inglis DW, Goldys EM, Calander NP (2011) Simultaneous concentration and separation of proteins in a nanochannel. Angewandte Chemie Int Edn 50(33):7546–7550CrossRef
13.
go back to reference Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5(5):943–948CrossRef Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5(5):943–948CrossRef
14.
go back to reference Kim SJ, Ko SH, Kang KH, Han J (2010) Direct seawater desalination by ion concentration polarization. Nat Nanotechnol 5(4):297–301CrossRef Kim SJ, Ko SH, Kang KH, Han J (2010) Direct seawater desalination by ion concentration polarization. Nat Nanotechnol 5(4):297–301CrossRef
15.
go back to reference Kwak R, Kim SJ, Han J (2011) Continuous-flow biomolecule and cell concentrator by ion concentration polarization. Anal Chem 83(19):7348–7355CrossRef Kwak R, Kim SJ, Han J (2011) Continuous-flow biomolecule and cell concentrator by ion concentration polarization. Anal Chem 83(19):7348–7355CrossRef
16.
go back to reference Leonard BP (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput Methods Appl Mech Eng 19(1):59–98CrossRef Leonard BP (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput Methods Appl Mech Eng 19(1):59–98CrossRef
17.
go back to reference Machida S, Urano TI, Sano K, Kawata Y, Sunohara K, Sasaki H, Yoshiki M, Mori Y (1995) A chiral director field in the nematic liquid crystal phase induced by a poly (. gamma.-benzyl glutamate) chemical reaction alignment film. Langmuir 11(12):4838–4843CrossRef Machida S, Urano TI, Sano K, Kawata Y, Sunohara K, Sasaki H, Yoshiki M, Mori Y (1995) A chiral director field in the nematic liquid crystal phase induced by a poly (. gamma.-benzyl glutamate) chemical reaction alignment film. Langmuir 11(12):4838–4843CrossRef
18.
go back to reference Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. Wiley Masliyah JH, Bhattacharjee S (2006) Electrokinetic and colloid transport phenomena. Wiley
19.
go back to reference Matin MH, Ohshima H (2016) Thermal transport characteristics of combined electroosmotic and pressure driven flow in soft nanofluidics. J Colloid Interf Sci 476:167–176CrossRef Matin MH, Ohshima H (2016) Thermal transport characteristics of combined electroosmotic and pressure driven flow in soft nanofluidics. J Colloid Interf Sci 476:167–176CrossRef
20.
go back to reference Matin MH, Ohshima H (2015) Combined electroosmotically and pressure driven flow in soft nanofluidics. J Colloid Interf Sci 460:361–369CrossRef Matin MH, Ohshima H (2015) Combined electroosmotically and pressure driven flow in soft nanofluidics. J Colloid Interf Sci 460:361–369CrossRef
21.
go back to reference Patankar S (1980) Numerical heat transfer and fluid flow. CRC Press Patankar S (1980) Numerical heat transfer and fluid flow. CRC Press
22.
go back to reference Prakash S, Zambrano HA, Rangharajan KK, Rosenthal-Kim E, Vasquez N, Conlisk AT (2016) Electrokinetic transport of monovalent and divalent cations in silica nanochannels. Microfluid Nanofluid 20(1):1–8CrossRef Prakash S, Zambrano HA, Rangharajan KK, Rosenthal-Kim E, Vasquez N, Conlisk AT (2016) Electrokinetic transport of monovalent and divalent cations in silica nanochannels. Microfluid Nanofluid 20(1):1–8CrossRef
23.
go back to reference Schmaljohann D (2006) Thermo-and ph-responsive polymers in drug delivery. Adv Drug Delivery Rev 58 (15):1655–1670CrossRef Schmaljohann D (2006) Thermo-and ph-responsive polymers in drug delivery. Adv Drug Delivery Rev 58 (15):1655–1670CrossRef
24.
go back to reference Stein D, Kruithof M, Dekker C (2004) Surface-charge-governed ion transport in nanofluidic channels. Phys Rev Lett 93(3):035901CrossRef Stein D, Kruithof M, Dekker C (2004) Surface-charge-governed ion transport in nanofluidic channels. Phys Rev Lett 93(3):035901CrossRef
25.
go back to reference Vlassiouk I, Smirnov S, Siwy Z (2008) Ionic selectivity of single nanochannels. Nano Lett 8(7):1978–1985CrossRef Vlassiouk I, Smirnov S, Siwy Z (2008) Ionic selectivity of single nanochannels. Nano Lett 8(7):1978–1985CrossRef
26.
go back to reference Vlassiouk I, Smirnov S, Siwy Z (2008) Nanofluidic ionic diodes. Comparison of analytical and numerical solutions. Acs Nano 2(8):1589–1602CrossRef Vlassiouk I, Smirnov S, Siwy Z (2008) Nanofluidic ionic diodes. Comparison of analytical and numerical solutions. Acs Nano 2(8):1589–1602CrossRef
27.
go back to reference Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. Nano Lett 9(7):2788–2793CrossRef Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. Nano Lett 9(7):2788–2793CrossRef
28.
go back to reference Yang M, Yang X, Wang K, Wang Q, Fan X, Liu W, Liu X, Liu J, Huang J (2015) Tuning transport selectivity of ionic species by phosphoric acid gradient in positively charged nanochannel membranes. Anal Chem 87(3):1544–1551CrossRef Yang M, Yang X, Wang K, Wang Q, Fan X, Liu W, Liu X, Liu J, Huang J (2015) Tuning transport selectivity of ionic species by phosphoric acid gradient in positively charged nanochannel membranes. Anal Chem 87(3):1544–1551CrossRef
29.
go back to reference Yeh L-H, Zhang M, Qian S, Hsu J-P, Tseng S (2012) Ion concentration polarization in polyelectrolyte-modified nanopores. J Phys Chem C 116(15):8672–8677CrossRef Yeh L-H, Zhang M, Qian S, Hsu J-P, Tseng S (2012) Ion concentration polarization in polyelectrolyte-modified nanopores. J Phys Chem C 116(15):8672–8677CrossRef
30.
go back to reference Zambrano HA, Vásquez N, Wagemann E (2016) Wall embedded electrodes to modify electroosmotic flow in silica nanoslits. Phys Chem Chem Phys 18(2):1202–1211CrossRef Zambrano HA, Vásquez N, Wagemann E (2016) Wall embedded electrodes to modify electroosmotic flow in silica nanoslits. Phys Chem Chem Phys 18(2):1202–1211CrossRef
31.
go back to reference Zhang Y, Kato S, Anazawa T (2008) A microchannel concentrator controlled by integral thermoresponsive valves. Sens Actuators B 129(1):481–486CrossRef Zhang Y, Kato S, Anazawa T (2008) A microchannel concentrator controlled by integral thermoresponsive valves. Sens Actuators B 129(1):481–486CrossRef
32.
go back to reference Zuo Y, Wang G, Ying Y, Zuo C, Liu Z, Dongmei H, Wang Y (2014) Suppression of electroosmotic flow by polyampholyte brush. Microfluidics Nanofluidics 17(5):923–931CrossRef Zuo Y, Wang G, Ying Y, Zuo C, Liu Z, Dongmei H, Wang Y (2014) Suppression of electroosmotic flow by polyampholyte brush. Microfluidics Nanofluidics 17(5):923–931CrossRef
Metadata
Title
Electroosmotic flow reversal and ion selectivity in a soft nanochannel
Authors
Naren Bag
S. Bhattacharyya
Partha P. Gopmandal
H. Ohshima
Publication date
15-03-2018
Publisher
Springer Berlin Heidelberg
Published in
Colloid and Polymer Science / Issue 5/2018
Print ISSN: 0303-402X
Electronic ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-018-4293-z

Other articles of this Issue 5/2018

Colloid and Polymer Science 5/2018 Go to the issue

Premium Partners