Skip to main content
Top
Published in: International Journal on Interactive Design and Manufacturing (IJIDeM) 3/2018

06-12-2017 | Original Paper

Ellipsoid bounding region-based ChainMail algorithm for soft tissue deformation in surgical simulation

Authors: Jinao Zhang, Yongmin Zhong, Chengfan Gu

Published in: International Journal on Interactive Design and Manufacturing (IJIDeM) | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Real-time modelling of force interaction with soft tissues is of great importance for interactive surgical simulation. This paper presents a new ChainMail algorithm for real-time modelling of soft tissue deformation under force interaction. Unlike traditional ChainMails using a box-shaped bounding region, the proposed method defines an ellipsoid-shaped bounding region according to the concept of principal strains in continuum mechanics to control the movement of chain elements. Based on this ellipsoid-shaped bounding region, new position adjustment rules are developed and further integrated with temporal-domain model dynamics for dynamic simulation of soft tissue deformation. Haptic interaction with soft tissues is achieved via force input, soft tissue deformation, and force feedback. Experimental results demonstrate that the proposed ChainMail can simulate soft tissue mechanical behaviours, accommodate isotropic and homogeneous, anisotropic and heterogeneous materials, and handle large deformation. The proposed ChainMail also requires only small computational time, capable of achieving real-time computational performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Miller, K.: Computational biomechanics for patient-specific applications. Ann. Biomed. Eng. 44(1), 1–2 (2016)CrossRef Miller, K.: Computational biomechanics for patient-specific applications. Ann. Biomed. Eng. 44(1), 1–2 (2016)CrossRef
2.
go back to reference Zhang, J., Zhong, Y., Gu, C.: Energy balance method for modelling of soft tissue deformation. Comput. Aided Des. 93, 15–25 (2017)MathSciNetCrossRef Zhang, J., Zhong, Y., Gu, C.: Energy balance method for modelling of soft tissue deformation. Comput. Aided Des. 93, 15–25 (2017)MathSciNetCrossRef
3.
go back to reference Zhang, J., et al.: Neural dynamics-based Poisson propagation for deformable modelling. Neural Comput. Appl. (2017) Zhang, J., et al.: Neural dynamics-based Poisson propagation for deformable modelling. Neural Comput. Appl. (2017)
4.
go back to reference Zhang, J., et al.: Energy propagation modeling of nonlinear soft tissue deformation for surgical simulation. Simulation (2017) Zhang, J., et al.: Energy propagation modeling of nonlinear soft tissue deformation for surgical simulation. Simulation (2017)
5.
go back to reference Lim, Y.-J., De, S.: Real time simulation of nonlinear tissue response in virtual surgery using the point collocation-based method of finite spheres. Comput. Methods Appl. Mech. Eng. 196(31–32), 3011–3024 (2007)CrossRefMATH Lim, Y.-J., De, S.: Real time simulation of nonlinear tissue response in virtual surgery using the point collocation-based method of finite spheres. Comput. Methods Appl. Mech. Eng. 196(31–32), 3011–3024 (2007)CrossRefMATH
6.
go back to reference Duan, Y., et al.: Volume preserved mass-spring model with novel constraints for soft tissue deformation. IEEE J. Biomed. Health Inform. 20(1), 268–280 (2016)CrossRef Duan, Y., et al.: Volume preserved mass-spring model with novel constraints for soft tissue deformation. IEEE J. Biomed. Health Inform. 20(1), 268–280 (2016)CrossRef
7.
go back to reference Omar, N., et al.: Soft tissue modelling with conical springs. Bio-Med. Mater. Eng. 26(s1), S207–S214 (2015)CrossRef Omar, N., et al.: Soft tissue modelling with conical springs. Bio-Med. Mater. Eng. 26(s1), S207–S214 (2015)CrossRef
8.
go back to reference Freutel, M., et al.: Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin. Biomech. 29(4), 363–372 (2014)CrossRef Freutel, M., et al.: Finite element modeling of soft tissues: material models, tissue interaction and challenges. Clin. Biomech. 29(4), 363–372 (2014)CrossRef
9.
go back to reference Frisken-Gibson, S.F.: 3D ChainMail: a fast algorithm for deforming volumetric objects. In: Proceedings of the Symposium on Interactive 3D graphics, pp. 149–154 (1997) Frisken-Gibson, S.F.: 3D ChainMail: a fast algorithm for deforming volumetric objects. In: Proceedings of the Symposium on Interactive 3D graphics, pp. 149–154 (1997)
10.
go back to reference Fortmeier, D., et al.: A virtual reality system for PTCD simulation using direct visuo-haptic rendering of partially segmented image data. IEEE J. Biomed. Health Inform. 20(1), 355–366 (2016)CrossRef Fortmeier, D., et al.: A virtual reality system for PTCD simulation using direct visuo-haptic rendering of partially segmented image data. IEEE J. Biomed. Health Inform. 20(1), 355–366 (2016)CrossRef
11.
go back to reference Rodriguez, A., et al.: SP-ChainMail: a GPU-based sparse parallel ChainMail algorithm for deforming medical volumes. J. Supercomput. 71(9), 3482–3499 (2015)CrossRef Rodriguez, A., et al.: SP-ChainMail: a GPU-based sparse parallel ChainMail algorithm for deforming medical volumes. J. Supercomput. 71(9), 3482–3499 (2015)CrossRef
12.
go back to reference Villard, P.F., et al.: Interventional radiology virtual simulator for liver biopsy. Int. J. Comput. Assist. Radiol. Surg. 9(2), 255–267 (2014)CrossRef Villard, P.F., et al.: Interventional radiology virtual simulator for liver biopsy. Int. J. Comput. Assist. Radiol. Surg. 9(2), 255–267 (2014)CrossRef
13.
go back to reference Oh, J.S., Choi, S.H., Choi, S.B.: Design of a 4-DOF MR haptic master for application to robot surgery: virtual environment work. Smart Mater. Struct. 23(9), 095032 (2014)CrossRef Oh, J.S., Choi, S.H., Choi, S.B.: Design of a 4-DOF MR haptic master for application to robot surgery: virtual environment work. Smart Mater. Struct. 23(9), 095032 (2014)CrossRef
14.
go back to reference Rodríguez, A., León, A., Arroyo, G.: Parallel deformation of heterogeneous ChainMail models: application to interactive deformation of large medical volumes. Comput. Biol. Med. 79, 222–232 (2016)CrossRef Rodríguez, A., León, A., Arroyo, G.: Parallel deformation of heterogeneous ChainMail models: application to interactive deformation of large medical volumes. Comput. Biol. Med. 79, 222–232 (2016)CrossRef
15.
go back to reference Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans. Vis. Comput. Graphics 5(1), 62–73 (1999)CrossRefMATH Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans. Vis. Comput. Graphics 5(1), 62–73 (1999)CrossRefMATH
16.
go back to reference Wu, W., Heng, P.A.: An improved scheme of an interactive finite element model for 3D soft-tissue cutting and deformation. Vis. Comput. 21(8–10), 707–716 (2005)CrossRef Wu, W., Heng, P.A.: An improved scheme of an interactive finite element model for 3D soft-tissue cutting and deformation. Vis. Comput. 21(8–10), 707–716 (2005)CrossRef
17.
go back to reference Weber, D., et al.: Deformation simulation using cubic finite elements and efficient p-multigrid methods. Comput. Graphics UK 53, 185–195 (2015)CrossRef Weber, D., et al.: Deformation simulation using cubic finite elements and efficient p-multigrid methods. Comput. Graphics UK 53, 185–195 (2015)CrossRef
18.
go back to reference Yang, C., et al.: Coupling time-varying modal analysis and FEM for real-time cutting simulation of objects with multi-material sub-domains. Comput. Aided Geom. Des. 43, 53–67 (2016)MathSciNetCrossRef Yang, C., et al.: Coupling time-varying modal analysis and FEM for real-time cutting simulation of objects with multi-material sub-domains. Comput. Aided Geom. Des. 43, 53–67 (2016)MathSciNetCrossRef
19.
go back to reference Huang, J., et al.: An efficient large deformation method using domain decomposition. Comput. Graphics UK 30(6), 927–935 (2006)CrossRef Huang, J., et al.: An efficient large deformation method using domain decomposition. Comput. Graphics UK 30(6), 927–935 (2006)CrossRef
20.
go back to reference Payan, Y.: Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, vol. 11. Springer, Berlin (2012) Payan, Y.: Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, vol. 11. Springer, Berlin (2012)
21.
go back to reference Xu, S., et al.: A nonlinear viscoelastic tensor-mass visual model for surgery simulation. IEEE Trans. Instrum. Meas. 60(1), 14–20 (2011)CrossRef Xu, S., et al.: A nonlinear viscoelastic tensor-mass visual model for surgery simulation. IEEE Trans. Instrum. Meas. 60(1), 14–20 (2011)CrossRef
22.
go back to reference Plantefève, R., et al.: Patient-specific biomechanical modeling for guidance during minimally-invasive hepatic surgery. Ann. Biomed. Eng. 44(1), 139–153 (2016)CrossRef Plantefève, R., et al.: Patient-specific biomechanical modeling for guidance during minimally-invasive hepatic surgery. Ann. Biomed. Eng. 44(1), 139–153 (2016)CrossRef
23.
go back to reference Miller, K., et al.: Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Int. J. Numer. Methods Biomed. Eng. 23(2), 121–134 (2007)MathSciNetMATH Miller, K., et al.: Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Int. J. Numer. Methods Biomed. Eng. 23(2), 121–134 (2007)MathSciNetMATH
24.
go back to reference Goulette, F., Chen, Z.-W.: Fast computation of soft tissue deformations in real-time simulation with Hyper-Elastic Mass Links. Comput. Methods Appl. Mech. Eng. 295, 18–38 (2015)MathSciNetCrossRef Goulette, F., Chen, Z.-W.: Fast computation of soft tissue deformations in real-time simulation with Hyper-Elastic Mass Links. Comput. Methods Appl. Mech. Eng. 295, 18–38 (2015)MathSciNetCrossRef
25.
go back to reference Wang, P., et al.: Virtual reality simulation of surgery with haptic feedback based on the boundary element method. Comput. Struct. 85(7–8), 331–339 (2007)CrossRef Wang, P., et al.: Virtual reality simulation of surgery with haptic feedback based on the boundary element method. Comput. Struct. 85(7–8), 331–339 (2007)CrossRef
26.
go back to reference Zhang, G.Y., et al.: A three-dimensional nonlinear meshfree algorithm for simulating mechanical responses of soft tissue. Eng. Anal. Bound. Elem. 42, 60–66 (2014)MathSciNetCrossRefMATH Zhang, G.Y., et al.: A three-dimensional nonlinear meshfree algorithm for simulating mechanical responses of soft tissue. Eng. Anal. Bound. Elem. 42, 60–66 (2014)MathSciNetCrossRefMATH
27.
28.
go back to reference Johnsen, S.F., et al.: NiftySim: a GPU-based nonlinear finite element package for simulation of soft tissue biomechanics. Int. J. Comput. Assist. Radiol. Surg. 10(7), 1077–1095 (2015)CrossRef Johnsen, S.F., et al.: NiftySim: a GPU-based nonlinear finite element package for simulation of soft tissue biomechanics. Int. J. Comput. Assist. Radiol. Surg. 10(7), 1077–1095 (2015)CrossRef
29.
go back to reference Georgii, J., Westermann, R.: Mass-spring systems on the GPU. Simul. Model. Pract. Theory 13(8), 693–702 (2005)CrossRef Georgii, J., Westermann, R.: Mass-spring systems on the GPU. Simul. Model. Pract. Theory 13(8), 693–702 (2005)CrossRef
30.
go back to reference Misra, S., Ramesh, K.T., Okamura, A.M.: Modeling of tool–tissue interactions for computer-based surgical simulation: a literature review. Presence Teleoperators Virtual Environ. 17(5), 463–491 (2008)CrossRef Misra, S., Ramesh, K.T., Okamura, A.M.: Modeling of tool–tissue interactions for computer-based surgical simulation: a literature review. Presence Teleoperators Virtual Environ. 17(5), 463–491 (2008)CrossRef
31.
go back to reference Zhang, J., Zhong, Y., Gu, C.: Deformable models for surgical simulation: a survey. IEEE Rev. Biomed. Eng. 1–1 (2017) Zhang, J., Zhong, Y., Gu, C.: Deformable models for surgical simulation: a survey. IEEE Rev. Biomed. Eng. 1–1 (2017)
32.
go back to reference Gibson, S., et al.: Volumetric object modeling for surgical simulation. Med. Image Anal. 2(2), 121–132 (1998)CrossRef Gibson, S., et al.: Volumetric object modeling for surgical simulation. Med. Image Anal. 2(2), 121–132 (1998)CrossRef
33.
go back to reference Schill, M.A., et al.: Biomechanical simulation of the vitreous humor in the eye using an enhanced chainmail algorithm. In: Wells, W.M., Colchester, A., Delp, S. (eds). Medical Image Computing and Computer-Assisted Interventation, pp. 679-687. Springer, Berlin (1998) Schill, M.A., et al.: Biomechanical simulation of the vitreous humor in the eye using an enhanced chainmail algorithm. In: Wells, W.M., Colchester, A., Delp, S. (eds). Medical Image Computing and Computer-Assisted Interventation, pp. 679-687. Springer, Berlin (1998)
34.
go back to reference Park, J., et al.: Shape retaining chain linked model for real-time volume haptic rendering. In: IEEE/ACM Siggraph Symposium on Volume Visualization and Graphics 2002, Proceedings, pp. 65–72 (2002) Park, J., et al.: Shape retaining chain linked model for real-time volume haptic rendering. In: IEEE/ACM Siggraph Symposium on Volume Visualization and Graphics 2002, Proceedings, pp. 65–72 (2002)
35.
go back to reference Wang, X.G., Fenster, A.: A virtual reality based 3D real-time interactive brachytherapy simulation of needle insertion and seed implantation. In: 2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano, vols. 1 and 2, pp. 280–283 (2004) Wang, X.G., Fenster, A.: A virtual reality based 3D real-time interactive brachytherapy simulation of needle insertion and seed implantation. In: 2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano, vols. 1 and 2, pp. 280–283 (2004)
36.
go back to reference Li, Y., Brodlie, K.: Soft object modelling with generalised ChainMail: extending the boundaries of web-based graphics. Comput. Graphics Forum 22(4), 717–727 (2003)CrossRef Li, Y., Brodlie, K.: Soft object modelling with generalised ChainMail: extending the boundaries of web-based graphics. Comput. Graphics Forum 22(4), 717–727 (2003)CrossRef
37.
go back to reference Zhang, J., et al.: A new ChainMail approach for real-time soft tissue simulation. Bioengineered 7(4), 246–252 (2016)CrossRef Zhang, J., et al.: A new ChainMail approach for real-time soft tissue simulation. Bioengineered 7(4), 246–252 (2016)CrossRef
38.
go back to reference Zhang, J., et al.: Cellular neural network modelling of soft tissue dynamics for surgical simulation. Technol. Health Care 25(S1), 337–344 (2017)CrossRef Zhang, J., et al.: Cellular neural network modelling of soft tissue dynamics for surgical simulation. Technol. Health Care 25(S1), 337–344 (2017)CrossRef
39.
go back to reference Srinath, L.S.: Advanced Mechanics of Solids. Tata McGraw-Hill, New Delhi (2003) Srinath, L.S.: Advanced Mechanics of Solids. Tata McGraw-Hill, New Delhi (2003)
40.
go back to reference Kim, N.-H.: Introduction to Nonlinear Finite Element Analysis. Springer, Berlin (2014) Kim, N.-H.: Introduction to Nonlinear Finite Element Analysis. Springer, Berlin (2014)
41.
go back to reference Muller, M., et al.: Position based dynamics. J. Vis. Commun. Image Represent. 18(2), 109–118 (2007)CrossRef Muller, M., et al.: Position based dynamics. J. Vis. Commun. Image Represent. 18(2), 109–118 (2007)CrossRef
42.
go back to reference Tang, W., Wan, T.R.: Constraint-based soft tissue simulation for virtual surgical training. IEEE Trans. Biomed. Eng. 61(11), 2698–2706 (2014)CrossRef Tang, W., Wan, T.R.: Constraint-based soft tissue simulation for virtual surgical training. IEEE Trans. Biomed. Eng. 61(11), 2698–2706 (2014)CrossRef
43.
go back to reference Liu, X.P.P., et al.: A new hybrid soft tissue model for visio-haptic simulation. IEEE Trans. Instrum. Meas. 60(11), 3570–3581 (2011)CrossRef Liu, X.P.P., et al.: A new hybrid soft tissue model for visio-haptic simulation. IEEE Trans. Instrum. Meas. 60(11), 3570–3581 (2011)CrossRef
44.
go back to reference Choi, K.S., Sun, H., Heng, P.A.: Interactive deformation of soft tissues with haptic feedback for medical learning. IEEE Trans. Inf Technol. Biomed. 7(4), 358–363 (2003)CrossRef Choi, K.S., Sun, H., Heng, P.A.: Interactive deformation of soft tissues with haptic feedback for medical learning. IEEE Trans. Inf Technol. Biomed. 7(4), 358–363 (2003)CrossRef
45.
go back to reference Fung, Y.-C.: Biomechanics: Mechanical Properties of Living Tissues, n edn. Springer, New York (1993)CrossRef Fung, Y.-C.: Biomechanics: Mechanical Properties of Living Tissues, n edn. Springer, New York (1993)CrossRef
46.
go back to reference Peterlík, I., Duriez, C., Cotin, S.: Modeling and real-time simulation of a vascularized liver tissue. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012, pp. 50–57. Springer, Berlin (2012) Peterlík, I., Duriez, C., Cotin, S.: Modeling and real-time simulation of a vascularized liver tissue. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012, pp. 50–57. Springer, Berlin (2012)
47.
go back to reference Barauskas, R., Gulbinas, A., Barauskas, G.: Investigation of radiofrequency ablation process in liver tissue by finite element modeling and experiment. Medicina 43(4), 310–325 (2007) Barauskas, R., Gulbinas, A., Barauskas, G.: Investigation of radiofrequency ablation process in liver tissue by finite element modeling and experiment. Medicina 43(4), 310–325 (2007)
48.
go back to reference Picinbono, G., et al.: Improving realism of a surgery simulator: linear anisotropic elasticity, complex interactions and force extrapolation. J. Vis. Comput. Anim. 13(3), 147–167 (2002)CrossRefMATH Picinbono, G., et al.: Improving realism of a surgery simulator: linear anisotropic elasticity, complex interactions and force extrapolation. J. Vis. Comput. Anim. 13(3), 147–167 (2002)CrossRefMATH
Metadata
Title
Ellipsoid bounding region-based ChainMail algorithm for soft tissue deformation in surgical simulation
Authors
Jinao Zhang
Yongmin Zhong
Chengfan Gu
Publication date
06-12-2017
Publisher
Springer Paris
Published in
International Journal on Interactive Design and Manufacturing (IJIDeM) / Issue 3/2018
Print ISSN: 1955-2513
Electronic ISSN: 1955-2505
DOI
https://doi.org/10.1007/s12008-017-0437-5

Other articles of this Issue 3/2018

International Journal on Interactive Design and Manufacturing (IJIDeM) 3/2018 Go to the issue

Premium Partner