Skip to main content
Top

2021 | OriginalPaper | Chapter

Embedding Knowledge Graphs Attentive to Positional and Centrality Qualities

Authors : Afshin Sadeghi, Diego Collarana, Damien Graux, Jens Lehmann

Published in: Machine Learning and Knowledge Discovery in Databases. Research Track

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Knowledge graphs embeddings (KGE) are lately at the center of many artificial intelligence studies due to their applicability for solving downstream tasks, including link prediction and node classification. However, most Knowledge Graph embedding models encode, into the vector space, only the local graph structure of an entity, i.e., information of the 1-hop neighborhood. Capturing not only local graph structure but global features of entities are crucial for prediction tasks on Knowledge Graphs. This work proposes a novel KGE method named Graph Feature Attentive Neural Network (GFA-NN) that computes graphical features of entities. As a consequence, the resulting embeddings are attentive to two types of global network features. First, nodes’ relative centrality is based on the observation that some of the entities are more “prominent” than the others. Second, the relative position of entities in the graph. GFA-NN computes several centrality values per entity, generates a random set of reference nodes’ entities, and computes a given entity’s shortest path to each entity in the reference set. It then learns this information through optimization of objectives specified on each of these features. We investigate GFA-NN on several link prediction benchmarks in the inductive and transductive setting and show that GFA-NN achieves on-par or better results than state-of-the-art KGE solutions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
E.g. (Berlin, CapitalOf, Germany) is a fact stating Berlin is the capital of Germany.
 
Literature
1.
go back to reference Balazevic, I., Allen, C., Hospedales, T.: Tucker: tensor factorization for knowledge graph. In: EMNLP-IJCNLP, pp. 5185–5194 (2019) Balazevic, I., Allen, C., Hospedales, T.: Tucker: tensor factorization for knowledge graph. In: EMNLP-IJCNLP, pp. 5185–5194 (2019)
3.
go back to reference Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013) Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)
4.
go back to reference Cai, L., Yan, B., Mai, G., Janowicz, K., Zhu, R.: TransGCN: coupling transformation assumptions with graph convolutional networks for link prediction. In: K-CAP, pp. 131–138. ACM (2019) Cai, L., Yan, B., Mai, G., Janowicz, K., Zhu, R.: TransGCN: coupling transformation assumptions with graph convolutional networks for link prediction. In: K-CAP, pp. 131–138. ACM (2019)
5.
go back to reference Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: AAAI, pp. 1811–1818 (2018) Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: AAAI, pp. 1811–1818 (2018)
6.
go back to reference Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Knowledge graph embedding with iterative guidance from soft rules. In: AAAI, pp. 4816–4823 (2018) Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Knowledge graph embedding with iterative guidance from soft rules. In: AAAI, pp. 4816–4823 (2018)
7.
go back to reference Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs. In: NeurIPS (2020) Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs. In: NeurIPS (2020)
8.
go back to reference Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)CrossRef Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)CrossRef
9.
go back to reference Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) ICLR (2015) Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) ICLR (2015)
10.
go back to reference Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017) Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)
11.
go back to reference Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decomposition for knowledge base completion. In: ICML, pp. 2863–2872 (2018) Lacroix, T., Usunier, N., Obozinski, G.: Canonical tensor decomposition for knowledge base completion. In: ICML, pp. 2863–2872 (2018)
13.
go back to reference Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015) Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)
14.
go back to reference Luqman, M.M., Ramel, J.Y., Lladós, J., Brouard, T.: Fuzzy multilevel graph embedding. Pattern Recognit. 46(2), 551–565 (2013)CrossRef Luqman, M.M., Ramel, J.Y., Lladós, J., Brouard, T.: Fuzzy multilevel graph embedding. Pattern Recognit. 46(2), 551–565 (2013)CrossRef
15.
go back to reference Meilicke, C., Fink, M., Wang, Y., Ruffinelli, D., Gemulla, R., Stuckenschmidt, H.: Fine-grained evaluation of rule- and embedding-based systems for knowledge graph completion. In: ISWC, pp. 3–20 (2018) Meilicke, C., Fink, M., Wang, Y., Ruffinelli, D., Gemulla, R., Stuckenschmidt, H.: Fine-grained evaluation of rule- and embedding-based systems for knowledge graph completion. In: ISWC, pp. 3–20 (2018)
16.
go back to reference Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: ISWC, pp. 498–514 (2016) Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: ISWC, pp. 498–514 (2016)
17.
go back to reference Sadeghi, A., Graux, D., Shariat Yazdi, H., Lehmann, J.: MDE: multiple distance embeddings for link prediction in knowledge graphs. In: ECAI (2020) Sadeghi, A., Graux, D., Shariat Yazdi, H., Lehmann, J.: MDE: multiple distance embeddings for link prediction in knowledge graphs. In: ECAI (2020)
18.
go back to reference Sadeghian, A., Armandpour, M., Ding, P., Wang, D.Z.: DRUM: end-to-end differentiable rule mining on knowledge graphs. In: NeurIPS, pp. 15321–15331 (2019) Sadeghian, A., Armandpour, M., Ding, P., Wang, D.Z.: DRUM: end-to-end differentiable rule mining on knowledge graphs. In: NeurIPS, pp. 15321–15331 (2019)
19.
go back to reference Schlichtkrull, M.S., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: ESWC (2018) Schlichtkrull, M.S., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: ESWC (2018)
20.
go back to reference Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: RotatE: knowledge graph embedding by relational rotation in complex space. In: ICLR (2019) Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: RotatE: knowledge graph embedding by relational rotation in complex space. In: ICLR (2019)
21.
go back to reference Teru, K., Denis, E., Hamilton, W.: Inductive relation prediction by subgraph reasoning. In: ICML, pp. 9448–9457 (2020) Teru, K., Denis, E., Hamilton, W.: Inductive relation prediction by subgraph reasoning. In: ICML, pp. 9448–9457 (2020)
22.
go back to reference Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: CVSC, pp. 57–66 (2015) Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: CVSC, pp. 57–66 (2015)
23.
go back to reference Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML, pp. 2071–2080 (2016) Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML, pp. 2071–2080 (2016)
24.
go back to reference Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.: Composition-based multi-relational graph convolutional networks. In: ICLR (2020) Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.: Composition-based multi-relational graph convolutional networks. In: ICLR (2020)
25.
go back to reference Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.P.: Composition-based multi-relational graph convolutional networks. In: ICLR (2020) Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.P.: Composition-based multi-relational graph convolutional networks. In: ICLR (2020)
26.
go back to reference Veira, N., Keng, B., Padmanabhan, K., Veneris, A.G.: Unsupervised embedding enhancements of knowledge graphs using textual associations. In: IJCAI (2019) Veira, N., Keng, B., Padmanabhan, K., Veneris, A.G.: Unsupervised embedding enhancements of knowledge graphs using textual associations. In: IJCAI (2019)
27.
go back to reference Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018) Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)
28.
go back to reference Wang, W.Y., Cohen, W.W.: Learning first-order logic embeddings via matrix factorization. In: IJCAI, pp. 2132–2138 (2016) Wang, W.Y., Cohen, W.W.: Learning first-order logic embeddings via matrix factorization. In: IJCAI, pp. 2132–2138 (2016)
29.
go back to reference Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI (2014) Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI (2014)
30.
go back to reference Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge graphs with entity descriptions. In: AAAI, pp. 2659–2665 (2016) Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge graphs with entity descriptions. In: AAAI, pp. 2659–2665 (2016)
31.
go back to reference Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method for knowledge graph reasoning. In: EMNLP, pp. 564–573 (2017) Xiong, W., Hoang, T., Wang, W.Y.: DeepPath: a reinforcement learning method for knowledge graph reasoning. In: EMNLP, pp. 564–573 (2017)
32.
go back to reference Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. In: Dy, J.G., Krause, A. (eds.) ICML, pp. 5449–5458 (2018) Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. In: Dy, J.G., Krause, A. (eds.) ICML, pp. 5449–5458 (2018)
33.
go back to reference Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015) Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: ICLR (2015)
34.
go back to reference Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base reasoning. In: NeurIPS, pp. 2319–2328 (2017) Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base reasoning. In: NeurIPS, pp. 2319–2328 (2017)
35.
go back to reference You, J., Ying, R., Leskovec, J.: Position-aware graph neural networks. In: ICML, pp. 7134–7143 (2019) You, J., Ying, R., Leskovec, J.: Position-aware graph neural networks. In: ICML, pp. 7134–7143 (2019)
36.
go back to reference Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings. In: NeurIPS, pp. 2731–2741 (2019) Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embeddings. In: NeurIPS, pp. 2731–2741 (2019)
Metadata
Title
Embedding Knowledge Graphs Attentive to Positional and Centrality Qualities
Authors
Afshin Sadeghi
Diego Collarana
Damien Graux
Jens Lehmann
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-86520-7_34

Premium Partner